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Acidic Lakes and Streams in the United States: 
The Role of Acidic Deposition 

A statistically designed survey of lakes and streams conducted by the Environmental 
Protection Agency in acid-sensitive areas of the United States, the National Surface 
Water Survey (NSWS), was used to identify the role of acidic deposition relative to 
other factors in causing acidic conditions in an estimated 1180lakcs and 4670 streams. 
Atmospheric deposition was the dominant source of acid anions in 75 percent of the 
acidic lakes and 4 7  percent of the acidic streams. Organic anions were dominant in 
one-fourth of the acidic lakes and streams; acidic mine drainage was the dominant acid 
source in 26 percent of the acidic streams. Other causes of acidic conditions were 
relatively unimportant on a regional scale. Nearly all the deposition-dominated acidic 
systems were found in six well-delineated subpopulations that represent about one- 
fourth of the NSWS lake population and one-third of the NSWS stream population. 

THERE IS NOW LITI'LE QUESTION 

that acidic deposition can cause sur- 
face water acidification (I), although 

many surface waters are acidic for reasons 
unrelated to acidic deposition, such as acidic 
drainage from mine tailings or natural pro- 
duction of organic acids. Thus, a major 
policy question regarding emissions reduc- 
tions is: What is the role of acidic deposi- 
tion, in relation to other factors, in the 
occurrence and distribution of acidic (2) 
waters in the United States? 

If adequate historical data were available, 
determining the role of acidic deposition 
would be reasonably straightforward. But 
historical water quality data are sparse, ques- 
tions regarding comparability of data are 
often unresolvable, and exogenous factors 
may have contributed to observed changes 
(3). Consequently, with a few exceptions, 
studying the direct association between 
long-term (>10 years) water quality trends 
and deposition trends has not been a pro- 
ductive approach for assessment of acidifica- 
tion on a regional scale. Paleolimnological 
research has been valuable, particularly in 
the Adirondacks, where a statistically de- 
signed study has been used to make a quan- 
titative assessment of historical acidification 
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(4, 5); in other regions, too few lakes have 
been studied to make quantitative regional 
assessments. Thus, in this paper, we base our 
assessment of the causes of acidic conditions 
largely on inferences from current chemical 
composition (6). 

Our analysis is based on the Environmen- 
tal Protection Agency's National Surface 
Water Survey (NSWS), a statistically de- 
signed synoptic survey of lakes and streams 
conducted in acid-sensitive areas of the 
United States (7, 8) (Fig. 1). We segregated 
acidic NSWS surface waters into three sub- 
populations: (i) organic-dominated surface 
waters, in which organic anions (Ap) exceed 
SO," + N O ,  on an equivalent basis (9) ,  
(ii) waters dominated by watershed sources 
of sulfate, in which measured con-
centrations are more than twice as high as 
concentrations predicted from evapocon- 
centration of atmospheric inputs (lo), and 
(iii) deposition-dominated waters, in which 

+ NO3- from atmospheric deposi- 
tion are the dominant acid anions. Although 
C1- is a strong acid anion and is important 
in coastal areas of the NSWS, we did not 
identify a chloride-dominated class because 
chloride generally enters watersheds as a 
neutral salt (sea spray or road salt), rather 
than as HCI. 

The deposition-dominated group in-
cludes 75% of the acidic lakes and 4% of 
the acidic streams in the NSWS (Table 1). 
Within this group, 67% of the lakes and 
88% of the streams had SO,": (C, - C1-) 
ratios greater than 1.0 (I 1) (C, is base 
cations). Ratios greater than 1.0 imply that 
H2S04 inputs exceed the capacity of water- 

sheds to neutralize acid inputs by C, pro-
duction (12). Therefore, H2S04 inputs 
alone are sufficient to cause acidic conditions 
in most acidic deposition-dominated surface 
waters in the NSWS. Deposition-dominat- 
ed, acidic surface waters typically had SO," 
concentrations of 70 to 150 yeqtliter, and 
low concentrations of NO3- and dissolved 
organic carbon (DOC) (Table 1). For 97% 
of the streams and 60% of the lakes in this 
category, [Ap] is less than 20% of [SO," + 
No,-]. 

One-fourth of both the acidic lakes and 
the acidic streams are organic-dominated 
(Table 1). Most of these are naturally acidic, 
indicated by the observation that half the 
lakes and 75% of the streams in this category 
had Ap:(C, - CIp) ratios greater than 1.0 
(13). Lakes and streams in this group had 
much higher DOC and lower than 
those in the deposition-dominated category 
(Table I).This difference reflects the more 
freauent occurrence of wetlands in water- 
sheds of the organic-dominated systems 
(14). In all, 80% of the organic-dominated 
acidic lakes are in Florida and the Upper 
Midwest; all sampled acidic streams in-this 
category are in the Mid-Atlantic Coastal 
Plain and Florida. 

One-fourth of the acidic NSWS streams 
are in the watershed sulfate-dominated cat- 
egory; nearly all these streams are acidic 
because of mine drainage. Sulfate and C, -

C1 were typically much higher in these 
streams than in deposition-dominated 
streams (Table 1). There was evidence of 
mining activity in every mine drainage 
stream watershed, and many had character- 
istic "yellow boy" (iron hydroxide) deposits. 
In the NSWS, streams impacted by acidic 
mine drainage were found primarily in the 
coal mining region of the Mid-Atlantic 
Highlands (15). Only 3% of the acidic lakes 
are in the watershed sulfate-dominated cat- 
egory (Table 1) (16). 

Nearly all the deposition-dominated acid- 
ic NSWS lakes and streams were found in six 
well-delineated subpopulations (Fig. 1 and 
Table 2). The two NSWS subpopulations 
most clearly affected by acidic deposition are 
lakes in the southwest Adirondack Moun- 
tains and lakes and streams in forested wa- 
tersheds of the Mid-Atlantic Highlands. 

All acidic NSWS lakes in the Adirondacks 
are located in the southwestern third of the 
subregion. Most are rapidly flushed drain- 
age systems; sensitivity to acidification in 
this region is controlled largely by depth of 
overlying glacial till and bedrock type (1 7). 
Paleolimnological studies (5, 18) in this 
region have shown that although some lakes 
were naturally acidic, the number of acidic 
lakes has tripled since preindustrial times, 
with concomitant increases in levels of inor- 
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Fig. 1. Map of the United 
States showing the per- 
centage of acidic waters in 
areas sampled in the 
NSWS and the high-inter- 
est regions that contain 
nearly all deposition-dom- 
inated acidic systems. 
High-interest regions are 
labeled. Other survey areas 
are shaded gray. In the 
eastern Upper Midwest, 
lakes in the high-interest 
subpopulation have silica 
less than 1 mg/liter; in the 
Mid-Atlantic Highlands, 
the high-interest subpop 
ulation wm~rises streams 
and lakes in' forested wa- 
tersheds only. 

ganic monomeric aluminum (M), which is 
toxic to fish. Nearly all cored lakes that are 
deposition-dominated and have S042-:(C, 
- CI) ratios greater than 1.0 have become 
more acidic since preindustrial times. Thus, 
paleolimnological studies corroborate infer- 
ences fiom lake chemistry. 

Nearly all deposition-dominated acidic 
streams and lakes in the Mid-Atlantic High- 
lands are in forested watersheds with areas 
less than 30 km2 and at elevations greater 
than 300 m; waters in lowland valleys are 
well buffered. Reliable historical data docu- 
menting acidification caused by acidic dep- 
osition in this region are sparse. However, 
for deposition-dominated acidic streams, 
SO4* and Al, concentrations were high 
(mean of 148 peqfiter and 202 pg/liter, 
respectively), and A- concentrations were 
low (mean of 10 wqfiter). Thus, the cur- 
rent chemical composition overwhelmingly 
implicates deposition-induced acidification. 

Acidic NSWS lakes in New England are a 
heterogeneous population, and watershed 
cultural disturbances complicate geochemi- 
cal interpretations for many lakes. Most 
acidic lakes in this subpopulation are depo- 
sition-dominated; about half had SO4* : (C, 

- Cl-) ratios >1.0 (Table 2). Paleolimno- 
logical studies in lakes that have acidified 
indicate that the timing of acidification co- 
incides with increases in fossil he1 combus- 
tion (19). 

Nearly all (93%) deposition-dominated 
acidic lakes in the Upper Midwest are low- 
silica lakes. Most are seepage lakes (defined 
as lakes with no mapped inlets or outlets) 
located in the eastern part of the region (Fig. 
1). Here, silica concentration is a surrogate 
for ground-water input, which in turn de- 
termines sensitivity to acidification (20). The 
acidification signal is not as strong here as in 
other regions: 82% of the acidic lakes in this 
group are deposition-dominated, but in half 
of these, [A-] constituted more than 30% 
of [SO4* + NO,-]. Historical surveys and 
paleolimnological studies show that pH and 
ANC have declined in a few lakes, although 
pH and ANC have increased in many lakes 
whose watersheds have been disturbed (21). 

In Florida, 94% of the deposition-domi- 
nated acidic lakes and all sampled deposi- 
tion-dominated acidic streams are in the 
northern highlands area (22) (Fig. 1). Most 
of these had low DOC (<3 mg/liter). Pale- 
olimnological data indicate that recent acid- 

Table 1. Characteristics (medians) of acidic NSWS lakes and streams, by chemical class. ALI units 
are in microequivalents per Liter, except DOC, which is in milligrams per Liter; fi is the estimated 
number of acidic lakes and streams in the NSWS target population; stream data are for upstream 
ends of reaches. 

Chemical 
dominance 

Chemical pammter 

Deposition 
Lakes 881 102 1.0 2 15 83 
Sueams 2190 117 2.4 2 11 86 

Organic acids 
Lakes 260 27 0.9 11 78 57 
Streams 1250 44 0.5 25 179 128 

Watershed sulfate 
Lakes 39 419 0.3 6 41 610 
Streams 1230 3520 1.2 1 6 3110 

%cation has occurred in the northern penin- 
sula of Florida, but some deposition- 
dominated acidic lakes in the Panhandle 
appear to be naturally acidic (23). 

The sixth area of interest is the Atlantic 
Coastal Plain. Although many streams in 
this area are organic-dominated, there is also 
a substantial population of depositiondom- 
inated acidic streams, mainly in the Pine 
Barrens of New Jersey. Of perhaps greater 
interest than acidic streams in the Coastal 
Plain are the many nonacidic streams with 
pH less than 6.0, about half the population. 
These streams are an important resource for 
anadromous fish, which-are particularly sen- 
sitive to acid stress. Although evidence of 
fish loss due to acidification in this region is 
inconclusive. over half the streams had acid- 
base chemis'try unsuitable (low pH, high 
aluminum, low calcium) for sensitive indig- 
enous species, such as blueback herring (24). 

Taken together, these six high-interest 
subpopulations represent about one-fourth 
of the lake population and one-third of the 
stream population in the NSWS, but they 
include nearly all the deposition-dominated 
acidic surface waters (95% of the lakes and 
84% of the streams). In several areas of the 
NSWS, few acidic systems were found. No 
acidic lakes were sampled in Minnesota; 
only one acidic lake, affected by a geother- 
mal spring, was sampled in the West; and 
less than 2% of the lakes and streams sarn- 
pled in the Interior Southeast were acidic 
(Fig. 1). 

We examined only three potential causes 
of acidic conditions, but it is unlikely that 
other mechanisms are important on a re- 
gional scale. Among other possible causes, 
forest regrowth following cutting in the 
early 1906s has been the most widely debat- 
ed (5, 25-27). However, in the Adiron- 
dacks, where paleolimnological studies are 
most complete, the timing of acidification 
corresponds better with the increase in in- 
dustrial emissions than with forest cutting 
and regrowth (27). Furthermore, there is no 
evidence that forest regrowth has caused 
surface waters to become acidic in regions 
with low deposition. 

Retention of sea-dt cations (28) is prob- 
ably unimportant as a cause of chronic acidic 
conditions in Northeast coastal lakes and 
Mid-Atlantic streams, and it is a minor 
contributor of H+ in low-ANC waters in 
Florida (29); however, short-term acidifica- 
tion caused bv retention of marine salts 
during storms is well documented in coastal 
areas (30). ~ ~ d r o l o g i c  changes, such as 
droughts, can have a profound effect on 
acid-base chemistry (31), but there is no 
evidence that long-term hydrologic change 
alone has increased the number of acidic 
surface waters on a regional scale. 
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Table 2. High-interest subpopulations in the NSWS. These were developed using physiographic 
maps, land-use data, and chemical data in an attempt to narrowly circumscribe deposition- 
dominated acidic lakes and streams (8). Streams were not sampled in the Adirondacks, New 
England, or the Upper Midwest. A dash indicates that there were no sampled systems in that 
category. 

Acidic systems 

Subpopulation 
Percent 
of total 

SW Adirondack lakes* 
New England lakes 
Mid-Atlantic highlands 

Forested lakest 

Forested streamst 


Atlantic Coastal Plain 
Lakes 
Streams 

N. Florida highlands* 
Lakes 
Streams 

E. Upper Midwest 
Low-silica lakes$ 

Chemical dominance for 
acidic systems 

SO,*: 

Depo- Or- Water- (CB- c1-) > I 

sition ganic shed-S (%) 
(%) (%) (%) 

*The southwest was defined as the art of the Adirondack physiographic province that receives >110 cmiyr 
precipitation. This is about one-third ofthe NSWS Adirondack lake population. +About half the total population 
of streams and one-third of the lakes were in predominantly forested watersheds. $This includes about one-fourth 
of the lakes and half the streams in the Flonda NSWS. §We used silica as an indicator of ground-water input. 
Low-silica lakes are defined as those with <1 mgiliter SiO,, about 43% of the NSWS lake population in the eastern 
Upper Midwest. 

Finally, Krug and Frink (26) proposed 
that many clear-water, high-sulfate, acidic 
lakes were always acidic and that the major 
change resulting from acidic deposition has 
been the replacement (anion substitution) of 
organic anions with sulfate. Analysis of cur- 
rent chemistry cannot determine whether 
this process is important. Paleolimnological 
studies in the Adirondacks indicate, howev- 
er, that inferred DOC concentrations have 
not declined substantially in acidified lakes (5, 
18).Other lines of evidence suggest that this 
process is significant mainly in waters with 
rather high initial DOC concentrations (32). 

We have identified populations of surface 
waters likely to have become chronically 
acidic as a result of acidic deposition. We 
emphasize that the population of chronically 
acidic NSWS surface waters is not the same 
as the population of surface waters whose 
biota have been impaired by acidic deposi- 
tion. Acidic waters (2) usually have p H  
values less than 5.0 to 5.5, whereas biolog- 
ical effects can appear when p H  declines 
below 6.0 or even 6.5 (24, 33). On the other 
hand, aluminum concentrations in acidic 
lakes in the Upper Midwest and Florida 
were lower than in lakes with comparable 
pH in the east, and 'Port fishes (yellow 
perch, largemouth bass) in these lakes are 
relatively acid-tolerant. We have not consid- 
ered short-term episodic acidification that 
may occur during peak flow periods (30, 34) 

represented in the NSWS (J5). Taken as a 
whole, these considerations suggest that the 

population of surface waters impacted by 
acidic deposition is considerably larger than 
the population of chronically acidic systems 
in the NSWS; but available information 
indicates that the geographic distribution of 
waters impaired by acidic deposition in the 
United States corresponds closely with the 
high-interest areas shown in Fig. 1 (36). 
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Alkali-Fulleride Superconductors: Synthesis, 
Composition, and Diamagnetic Shielding 

The recent report of a superconductivity onset near the critical temperature Tc= 18 K 
in potassium-doped C,, raises questions concerning the composition and stability of 
the superconducting phase. The effects of mixing and heat treatment of K, C,, samples 
prepared over a wide range of initial compositions on the superconducting transition 
was determined from shielding diamagnetism measurements. A single superconduct- 
ing phase (T, = 19.3 K) occurs for which the composition is K,C,,. The shielding 
reaches a maximum of greater than 4 0  percent of the perfect diamagnetism, a high 
value for a powder sample, in samples prepared from 3: 1 mixtures. A Rb,C,, sample 
prepared and analyzed in an analogous way exhibited evidence for superconductivity 
with Tc= 30 K and a diamagnetic shielding of 7 percent could be obtained. 

THE RECENT DISCOVERY (1 )  AND 

separation (2, 3 )  of molecular forms 
of solid carbon has made possible the 

formation of new semiconducting (4) and 
condncting (5)  Zanionic charge-transfer 
compounds of C,, (and C,,) with molecu- 
lar and alkali counterions, respectively. 
From the latter studies, Hebard et al. (6)  
have provided unambiguous evidence for 
superconductivity in solids composed of 
icosahedral C,, molecules "doped" with po- 
tassium (KC,,) with an onset near T, = 18 
K. They combined three experiments on 
two different morphologies (microwave ab- 
sorption and magnetic susceptibility x of 
powders, and dc resistivity of films) to assert 
superconductivity under unusually difficult, 
poorly controlled chemical conditions. As 
the powder is prepared by a solid-state 
reaction, only the initial composition is 
known, so no claim could be made about the 
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homogeneity of the end product. Therefore, 
the actual composition of the superconduct- 
ing phase was not directly determined, and 
the lower bound of 1%superconducting 
phase, established by shielding diamagne- 
tism measurements, leaves open questions 
about the compositional stability of this 
phase within the K-C,, phase diagram. 

We report measurements of the shielding 
diamagnetism curves (X versus T) conduct-
ed over a range of compositions and treat- 
ments with the aim of separating and iden- 
tifying the superconducting phase. In an 
attempt to narrow the composition range of 
the superconducting material, the initial 
composition was systematically varied to 
locate the maximum fraction of shielding 
diamagnetism, which is a measure of the 
actual quantity of superconducting material. 
This maximum, found at a composition 
K,C,,, is >40%, a high value for a powder 
sample. This phase appears to be stable, that 
is, it is present after indefinitely long heating 
and mixing, for all nominal sample compo- 
sitions, x <6. When this same procedure 
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