

DEVELOPING A GOLD-COPPER-MOLYBDENUM GIANT

PEBBLE PROJECT

ALASKA, USA

CAUTIONARY AND FORWARD LOOKING INFORMATION COMMENTS

All information contained in this graphic presentation booklet relating to the contents of the November 2004 Preliminary Assessment of the Pebble Gold-Copper-Molybdenum Project, including but not limited to representations of the Pebble project's potential and information about production parameters, capital costs, sustaining capital costs, and operating costs, production summary, off-site costs, and financial analyses, are "forward looking statements" within the definition of the United States Private Securities Litigation Reform Act of 1995. The information relating to the possible construction of a port, road, power generating facilities and power transmission facilities also constitutes such "forward looking statements." The Preliminary Assessment was prepared to broadly quantify the Pebble project's capital and operating cost parameters and to provide guidance on the type and scale of future project engineering and development work that will be needed to ultimately define the project's likelihood of feasibility and optimal production rate. It was not prepared to be used as a valuation of the Pebble project nor should it be considered to be a prefeasibility study. The capital and operating cost estimates which were used have been developed only to an approximate order of magnitude based on generally understood capital cost to production level relationships and they are not based on any systematic engineering studies, so the ultimate costs may vary widely from the amounts set out in the Preliminary Assessment. This could materially and adversely impact the projected economics of the Pebble project. As is normal at this stage of a project, data is incomplete and estimates were developed based solely on the expertise of the individuals involved as well as the assessments of other persons who were involved with previous operators of the project. At this level of engineering, the criteria, methods and estimates are very preliminary and result in a high level of subjective judgment being employed. The Preliminary Assessment uses only inferred mineral resources which are considered too speculative geologically to be categorized as mineral reserves and to have economic considerations applied to them. There can be no assurance that the operating and financial projections contained in the Preliminary Assessment will be realized. The full text of the November 2004 Preliminary Assessment of the Pebble Gold-Copper-Molybdenum Project can be found at www.sedar.com.

The following are the principal risk factors and uncertainties which, in management's opinion, are likely to most directly affect the conclusions of the Preliminary Assessment and the ultimate feasibility of the Pebble project. The mineralized material at the Pebble project is currently classified as an inferred resource and it is not a reserve. The mineralized material in the Preliminary Assessment is based only on the inferred resource model developed by Norwest Corporation in February, 2004. That model includes only assay information from drilling up to the end of 2003. Considerable additional work, including in-fill drilling, additional process tests, and other engineering and geologic work will be required to determine if the mineralized material is an economically exploitable reserve. There can be no assurance that this mineralized material can become a reserve or that the amount may be converted to a reserve or the grade thereof. Final feasibility work has not been done to confirm the pit design, mining methods, and processing methods assumed in the Preliminary Assessment. Final feasibility could determine that the assumed pit design, mining methods, and processing methods are not correct. Construction and operation of the mine and processing facilities depends on securing environmental and other permits on a timely basis. No permits have been applied for and there can be no assurance that required permits can be secured or secured on a timely basis. Data is incomplete and cost estimates have been developed in part based on the expertise of the individuals participating in the preparation of the Preliminary Assessment and on costs at projects believed to be comparable, and not based on firm price quotes. Costs, including design, procurement, construction, and on-going operating costs and metal recoveries could be materially different from those contained in the Preliminary Assessment. There can be no assurance that mining can be conducted at the rates and grades assumed in the Preliminary Assessment. The project requires the development of port facilities, roads and electrical generating and transmission facilities. Although Northern Dynasty believes that the State of Alaska favours the development of these facilities and may be willing to arrange financing for their development, there can be no assurance that these infrastructure facilities can be developed on a timely and costeffective basis. Energy risks include the potential for significant increases in the cost of fuel and electricity. The Preliminary Assessment assumes specified, long-term prices levels for gold, copper, silver and molybdenum. Prices for these commodities are historically volatile, and Northern Dynasty has no control of or influence on those prices, all of which are determined in international markets. There can be no assurance that the prices of these commodities will continue at current levels or that they will not decline below the prices assumed in the Preliminary Assessment. Prices for gold, copper, silver, and molybdenum have been below the price ranges assumed in Preliminary Assessment at times during the past ten years, and for extended periods of time. The project will require major financing, probably a combination of debt and equity financing. Interest rates are at historically low levels. There can be no assurance that debt and/or equity financing will be available on acceptable terms. A significant increase in costs of capital could materially and adversely affect the value and feasibility of constructing the project. Other general risks include those ordinary to very large construction projects including the general uncertainties inherent in engineering and construction cost, the need to comply with generally increasing environmental obligations, and accommodation of local and community concerns.

2003 DRILLING DELINEATES WORLD CLASS GOLD-COPPER-MOLYBDENUM RESOURCES¹

Confirmed By Norwest Corporation

Cut-Off	Size		Gra	de		Contained Metal				
CuEQ ²	Million Tonnes	Gold g/t	Copper %	Moly %	CuEQ ² %	Gold M oz	Copper B lbs	AuEQ ² M oz		
.30	2,737	.30	.27	.015	0.55	26.5	16.5	76		
.40	2,232	.33	.30	.016	0.60	24	14.5	67		
.50	1,573	.37	.32	.017	0.66	19	11.3	52		
.60	883	.43	.37	.019	0.74	12	7.1	33		
.70	435	.49	.42	.021	0.84	7	4.0	18		
.80	208	.55	.48	.023	0.95	4	2.2	10		

¹Mineral resources do not have demonstrated economic viability. An inferred mineral resource is that part of a mineral resource for which quantity and grade can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity.

 $CuEQ = Cu(\%) + (Au(g/t) \times 11.25/17.64) + (Mo(\%) \times 99.23/17.64).$ $AuEQ = Au(g/t) + (Cu(\%) \times 17.64/11.25) + (Mo(\%) \times 99.23/11.25).$

²Copper and gold equivalent calculations use metal prices of US\$0.80/lb for copper, US\$350/oz for gold, and US\$4.50/lb for molybdenum. The contained gold, copper, and gold-equivalent represent estimated metal content in the ground and have not been adjusted for metallurgical recoveries. Adjustment factors to account for differences in relative metallurgical recoveries for gold, copper, and molybdenum will depend upon the completion of definitive metallurgical testing.

LARGEST GOLD DEPOSIT IN NORTH AMERICA

NORTH AMERICA'S LARGEST GOLD DEPOSITS¹ RANKED BY CONTAINED GOLD IN RESOURCES

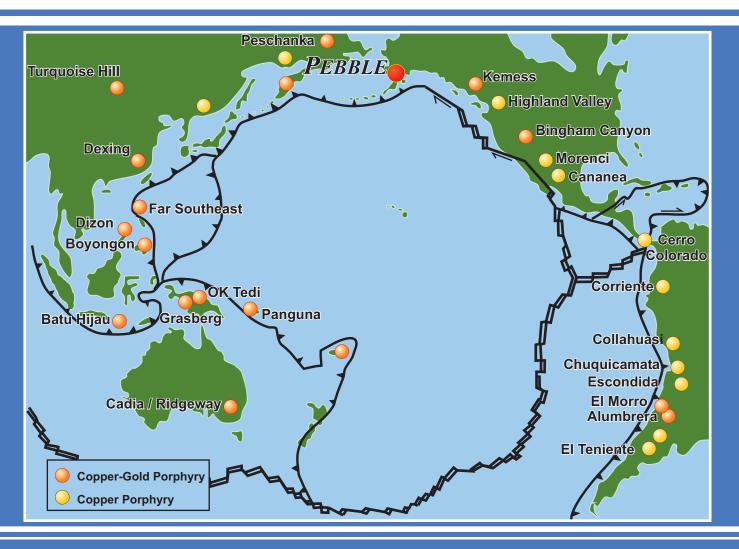
			Contained Metal				
Rank	Project	Location	Gold M oz	Copper B lbs			
1	Pebble	USA	26.5	16.5			
2	Donlin Creek	USA	25.5	-			
3	Betze Post	USA	19.4	-			
4	Metates	MEX	12.3	5.4			
5	Laronde	CAN	10.4	4.9			
6	Bingham Canyon	USA	10.3	19.7			
7	El Arco	MEX	5.0	13.6			

¹Source: Metals Economics Group; Letter Report December, 2003.

SECOND LARGEST COPPER DEPOSIT IN NORTH AMERICA

NORTH AMERICA'S LARGEST COPPER DEPOSITS¹ RANKED BY CONTAINED COPPER IN RESOURCES

Donk	Droinet	Lagation	Million		Grades		Contained Metal		
Rank	Project	Location	Tonnes	Gold (g/t)	Copper (%)	CuEQ (%)	Gold M oz	Copper B lbs	CuEQ B lbs
1	Cananea	MEX	5,186	-	0.42	0.42	-	48	48
2	Pebble	USA	2,737	0.30	0.27	0.55	26.5	16.5	33
3	Morenci	USA	2,622	-	0.27	0.27	-	15	15
4	Safford	USA	1,740	-	0.37	0.37	-	14	14
5	San Manuel	USA	1,042	-	0.57	0.57	-	13	13
6	Bingham Canyon	USA	958	0.34	0.61	0.93	10.3	13	20
7	Ray	USA	988	-	0.58	0.58	-	13	13


¹Source: Metals Economics Group; Letter Report December, 2003.

ONE OF THE WORLD'S LARGEST GOLD - COPPER PORPHYRY DEPOSITS¹

			Contained Metal							
Rank	Project	Location	Gold M oz	Copper B lbs	CuEQ B lbs	AuEQ M oz	Au/Cu Ratio			
1	Grasberg	IND	109	80	128	292	1.4			
2	Los Pelambres	CHL	3	43	48	110	0.1			
3	La Granja	PER	4	43	45	102	0.1			
4	Turquoise Hill	MON	17	35	42	97	0.5			
5	Pebble	USA	26.5	16.5	33	76	1.6			
6	Escondida Norte	CHL	6	28	30	69	0.2			
7	Sar Cheshmeh	IRN	11	17	24	55	0.6			
8	Salobo	BRA	15	17	23	53	0.9			
9	Batu Hijau	IND	17	16	23	52	1.0			
10	Jiangxi Copper	CHI	6	18	21	47	0.3			
11	Bingham Canyon	USA	10	13	20	45	8.0			

¹Source: Metals Economics Group; Letter Report December, 2003.

GIANT PORPHYRY SYSTEMS ON PACIFIC "RING OF FIRE"

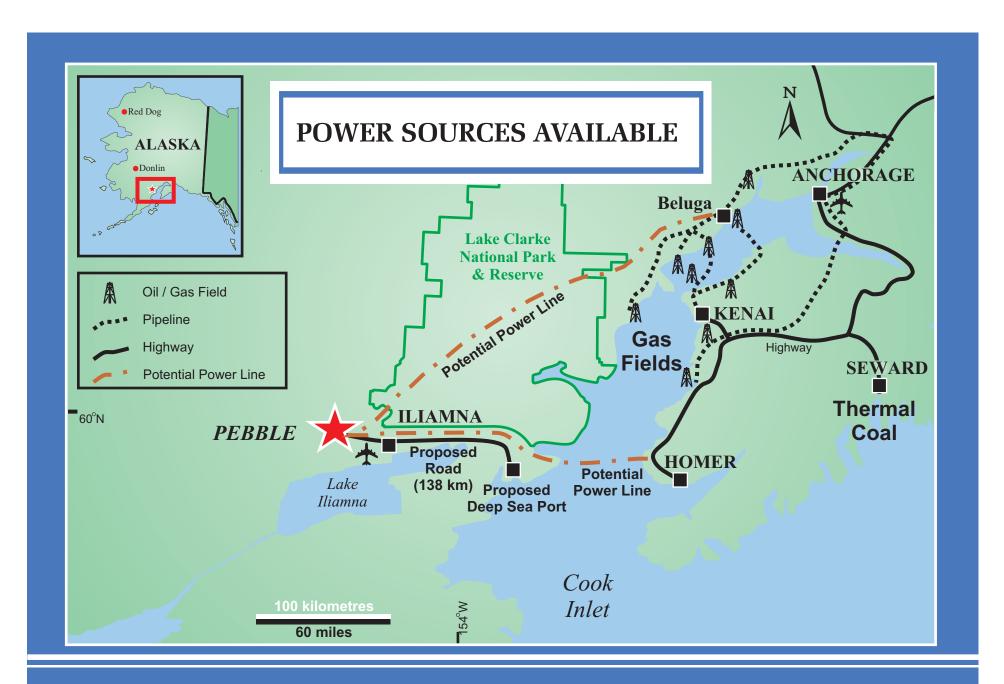
KEY ELEMENTS IN PLACE FOR A MAJOR MINE

Alaska Is Ideal For Mine Development	
Power Sources Available	
Favorable Terrain For All Infrastructure	
Property Deal Provides 100% Ownership	
Deposit Amenable To Low Cost Mining	
Long-Life Deposit / Large-Scale Metal Production	
Good Metallurgical Results	
Higher-Grade Resources For Quick Payback	

PEBBLE PROJECT

Mine Development Check List

ALASKA IS MINING FRIENDLY



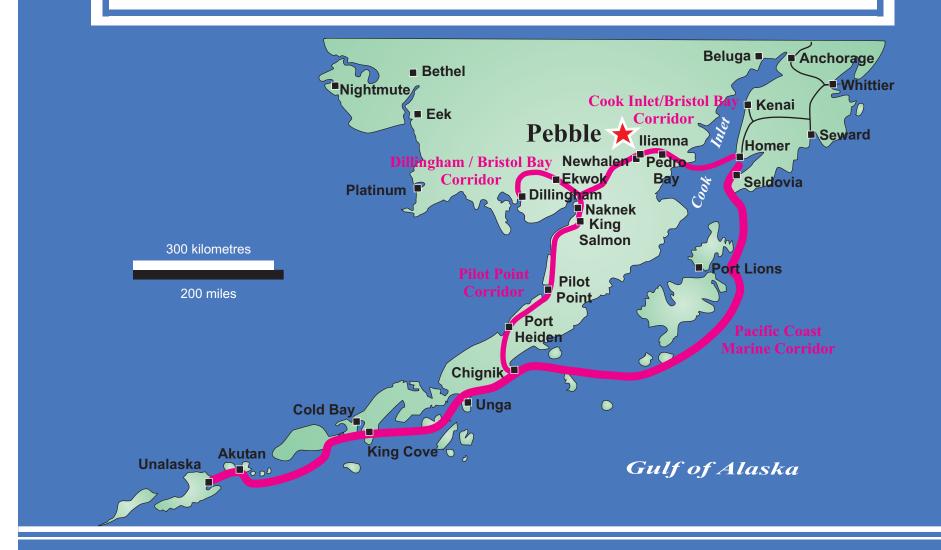
PEBBLE OPERATIONS BASE AT ILIAMNA

PEBBLE PROJECT

Iliamna Area

STATE INVESTMENT IN INFRASTRUCTURE IS TRADITIONAL

State as an Equity Partner


The State of Alaska, through AIDEA, is able to participate as an equity partner in minerals development. In recent years AIDEA has financed the transportation system, including the 52-mile road and upgrades to the port that serves the Red Dog Mine in northwest Alaska. AIDEA financed the remodeling and upgrading of Skagway ore terminal that serves Yukon base metal mines through the Alaska port city of Skagway. Additionally, AIDEA has assumed an equity interest in Alaska's only export coal terminal located in Seward. In all instances the state recovers its investment and a modest rate of return through user fees negotiated with the mineral company using the facilities.

Source: Alaska Department of Community and Economic Development Website

AIDEA funded projects include:

- Red Dog Mine Road and Port: Original investment of \$180 million in 1990, now expanded to \$267 million. A further \$148+ million port expansion now under investigation.
- Fort Knox Mine Tailing Disposal Facility: \$71 million investment in 1997.
- Kensington Mine Port and Tailing Disposal Facility: Initial approval in 2004 for \$20 million investment (more than 25% of the project's \$75 million capital cost).


PEBBLE ACCESS COINCIDES WITH STATE TRANSPORTATION PLANS

PEBBLE PROJECT

Southwest Transportation Corridors

ROAD AND PORT DEVELOPMENT STRAIGHT FORWARD

PEBBLE PROJECT

Road and Port Locations

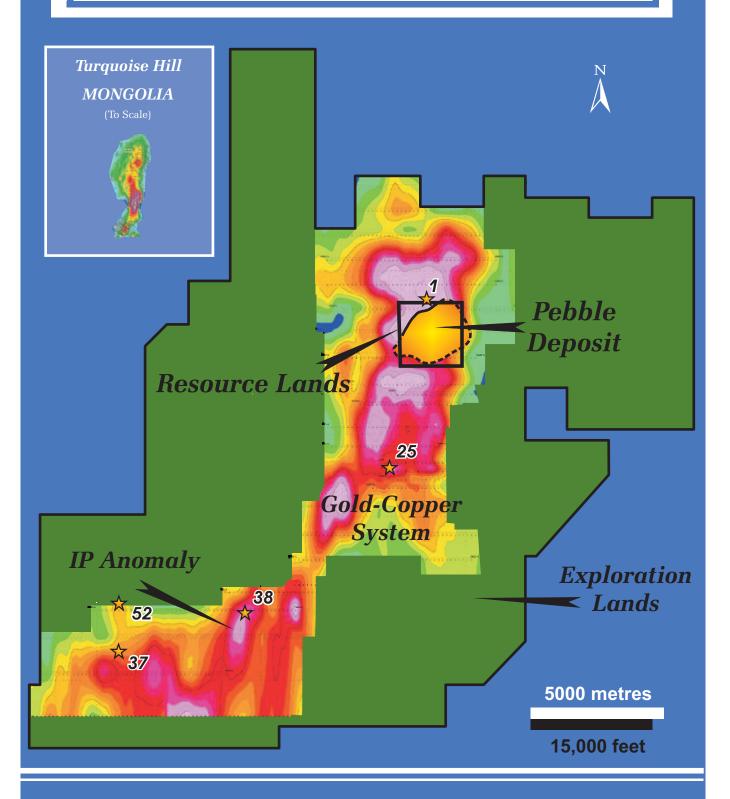
PEBBLE PROJECT

Road Access To Deposit

INFRASTRUCTURE IN PLACE

PEBBLE PROJECT

Homer Port Staging Area


NDM IS WORKING HARD TO EARN ITS SOCIAL LICENSE

PEBBLE PROPERTY HISTORY

- 1987-89 Discovery outcrop sampled
 - Initial drilling modest encouragement for gold
 - IP survey indicates large porphyry signature
 - Drill hole #6 discovers Pebble deposit
- 1990-92 Accelerated exploration:
 - 87 drill holes confirmed Pebble deposit
 - Preliminary engineering studies by CESL
- Four shallow drill holes 6 km south of deposit
- Twenty additional drill holes in deposit
 size doubled to 1+ billion tonnes
- Purchase agreement between Cominco and Hunter Dickinson Group
 - IP anomaly expanded to 89 km²
 - 6 coalescing metal-rich hydrothermal systems identified
 - Assignment of Cominco agreement to NDM
- Northern Dynasty completes 68 hole / 37,000 ft drilling program resulting in four exciting new discoveries
 - All drill core in Pebble deposit logged and geological model established indicating strong potential for substantial higher-grade resources for early payback of capital costs
 - Numerous priority targets for the discovery of additional deposits identified
- Northern Dynasty's 58 hole / 64,719 ft drilling program successfully outlines substantial higher-grade resources, and greatly expands size of the Pebble deposit
 - Independent resource estimate by Norwest Corporation confirms a world class gold-copper porphyry deposit
- \$34.5 million program to collect engineering, environmental, and socio-economic data required for completion in 2005 of a Bankable Feasibility Study and submission of permit applications for a mine. The program includes 47,800 metres of drilling to:
 - establish measured and indicated resources
 - obtain data for geotechnical, metallurgical and hydrogeological design
 - determine the full extent of the deposit and its higher grade areas
 - extensive baseline environmental and socio-economic surveying

PROPERTY CAPTURES WORLD'S LARGEST SULPHIDE SYSTEM

PEBBLE PROJECT

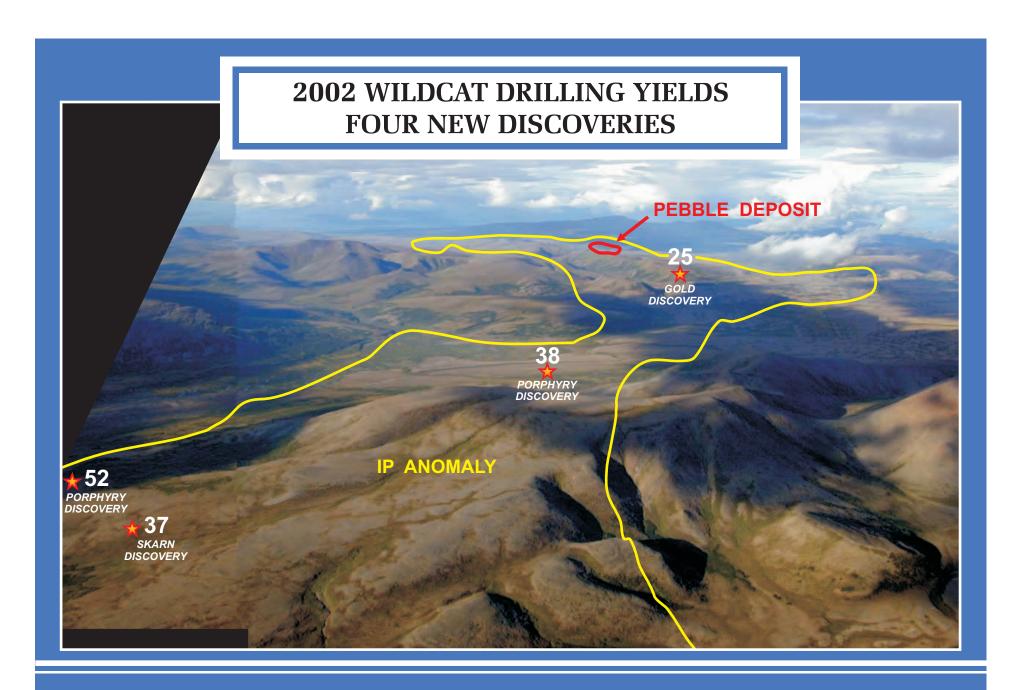
Property Map

COMINCO AGREEMENT GIVES NDM CONTROL OF ENTIRE DISTRICT

RESOURCE LANDS (Pebble Deposit)

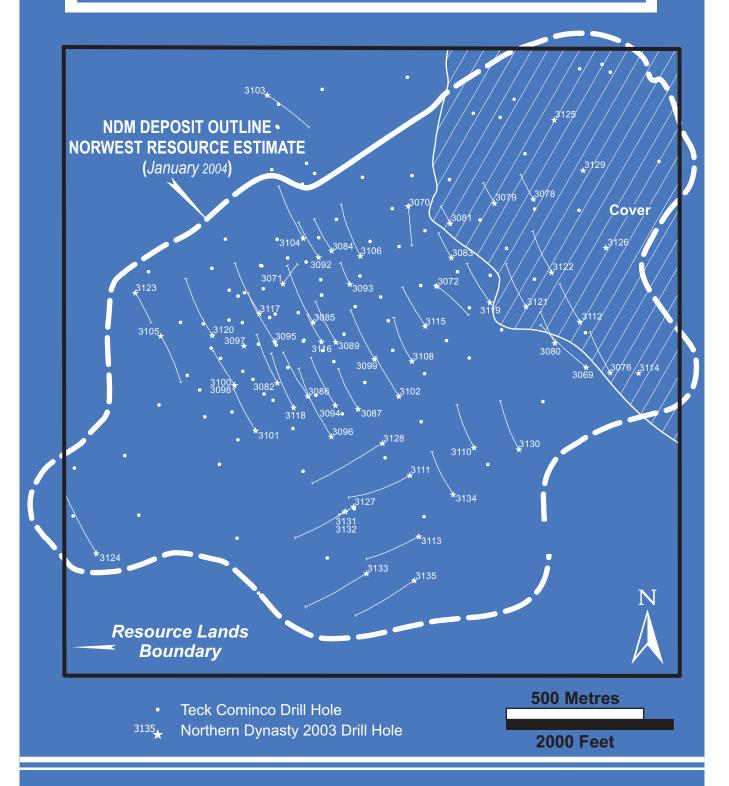
- Structured as an option to purchase the Pebble deposit
- Option to purchase 100% of Resource Lands
- Staged option payments of US \$250,000, 1,000,000 shares, 1,250,000 warrants (all paid)
- Purchase price is US \$10 million (cash or stock at NDM's option) by November 30, 2004
 - no residual royalty or back-in rights
- Purchase price is US 37 cents per ounce of contained gold in Pebble deposit
- For assignment, HD receives shares for appraised value of a 20% interest when option exercised

EXPLORATION LANDS (Excludes Pebble Deposit)


- Structured as an earn-in followed by joint venture or purchase
- Option to earn 50% interest by completing 60,000 feet of drilling by November 30, 2004 (completed)
- Upon earn-in Cominco can elect to either:
 - participate 50:50 in joint venture; or
 - sell all its interest for US \$4 million (cash or stock at NDM's option) and 5% NPI

GIANT SYSTEMS HOST MULTIPLE DEPOSITS

PEBBLE PROJECT


Comparison of Sulphide Systems

PEBBLE PROJECT

2002 Wildcat Drilling

2003 DRILLING ALMOST TRIPLES SIZE OF PEBBLE DEPOSIT

PEBBLE PROJECT

2003 Drill Hole Plan

WORLD CLASS GOLD-COPPER-MOLYBDENUM RESOURCES¹ LONG-LIFE MINE DEVELOPMENT

Cut-Off	Size		Gra	de	Contained Metal			
CuEQ ² %	Million Tonnes	Gold g/t	Copper %	Moly %	CuEQ ² %	Gold M oz	Copper B lbs	AuEQ ² M oz
.30	2,737	.30	.27	.015	0.55	26.5	16.5	76
.40	2,232	.33	.30	.016	0.60	24	14.5	67
.50	1,573	.37	.32	.017	0.66	19	11.3	52
.60	883	.43	.37	.019	0.74	12	7.1	33
.70	435	.49	.42	.021	0.84	7	4.0	18
.80	208	.55	.48	.023	0.95	4	2.2	10

¹Mineral resources do not have demonstrated economic viability. An inferred mineral resource is that part of a mineral resource for which quantity and grade can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity.

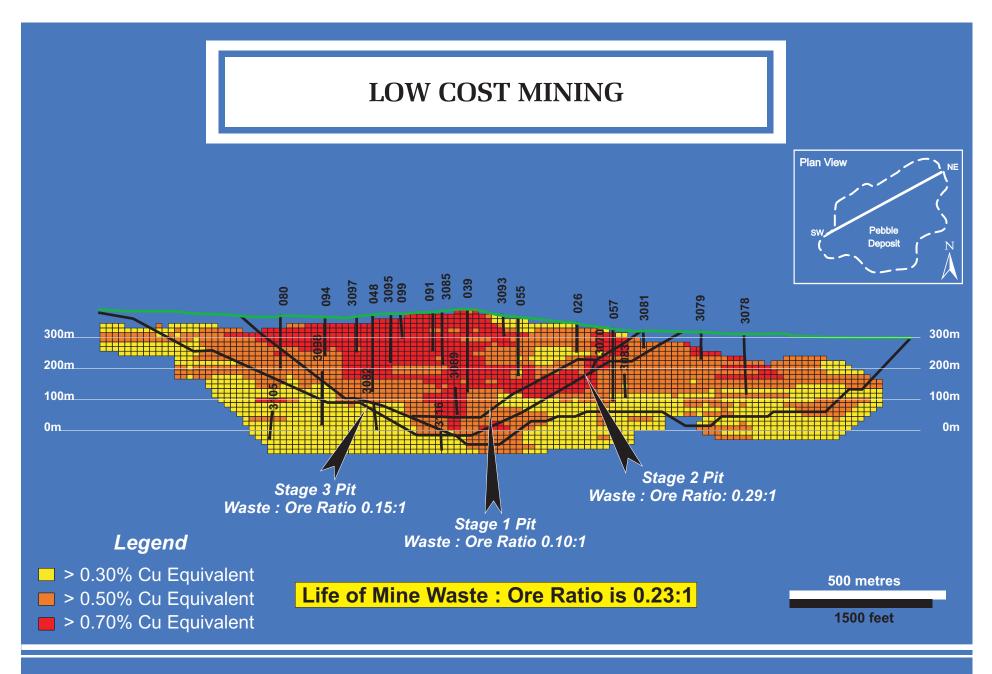
 $CuEQ = Cu(\%) + (Au(g/t) \times 11.25/17.64) + (Mo(\%) \times 99.23/17.64).$

 $AuEQ = Au(g/t) + (Cu(\%) \times 17.64/11.25) + (Mo(\%) \times 99.23/11.25)$

²Copper and gold equivalent calculations use metal prices of US\$0.80/lb for copper, US\$350/oz for gold, and US\$4.50/lb for molybdenum. The contained gold, copper, and gold-equivalent represent estimated metal content in the ground and have not been adjusted for metallurgical recoveries. Adjustment factors to account for differences in relative metallurgical recoveries for gold, copper, and molybdenum will depend upon the completion of definitive metallurgical testing.

PORPHYRY DEPOSITS RECENTLY PLACED INTO PRODUCTION

Deposit	Location	Owner	Million Tonnes	Gold g/t	Copper %	Moly %	CuEQ¹
Kemess South	Canada	Northgate	200	0.63	0.22	-	0.62
Cadia	Australia	Newcrest	204	0.73	0.17	-	0.64
Batu Hijau	Indonesia	Newmont	914	0.41	0.52	-	0.78
Los Pelambres	Chile	Antofagasta	2,074	-	0.65	0.017	0.75


¹ Copper-equivalent calculations use the same metal prices and conversion formula as employed by Norwest for the Pebble deposit inferred resources estimate. $CuEQ = Cu(\%) + (Au(g/t) \times 11.25/17.64) + (Mo(\%) \times 99.23/17.64)$.

Pebble	USA	NDM	2,114 ²	0.33	0.30	0.016	0.61
Pebble	USA	NDM	420 ²	0.47	0.42	0.021	0.85

²Resources in Stage 3 Pit at 0.30% and 0.70% CuEQ cut-offs.

PEBBLE PROJECT

New Mines

PEBBLE PROJECT

Deposit Cross Section

CONTINUOUS GOLD-COPPER-MOLY MINERALIZATION

Drill Core Samples

Location UTM NAD 27 Comment

Direction / Length

Drill Hole Information

Laboratory ALSChemex
File No. A9116834,A9117065

Azimuth 2 °
Inclination -90 °
Length 800 Feet

Number 048

Zone Pebble - Main

Operator Cominco American

File No.	A911683	4, A91170	65 Elev	ation	372.50		Length 800 Feet		Operator Con	minco American		
Sample	Interval (1	feet) Int.	Sample Number	Au g/t	Cu %	Mo ppm	Ag ppm	Pb ppm	Zn ppm	Cu EQ ¹	Lithology	Sample Method
0	35		NS					<u> </u>			Overburden	Not Sampled
35	45	35.0	437188	0.725	0.030	188	2.0	12	8	0.616	Granodiorite	1/2 Core Split
45	55	10.0	437189	0.723	0.030	214	3.2	26	6	0.676	Granodiorite	1/2 Core Split
55	65	10.0	437199		0.060	176	2.6		12	0.676	Granodiorite	1/2 Core Split
65	75	10.0	437190	0.510	0.060	207	2.4	10 26	16	0.308	Granodiorite	1/2 Core Split
75	85	10.0	437191	0.445	0.030	70	2.4	4	24	0.482	Granodiorite	1/2 Core Split
85	95		437192	0.520	0.030	157	12.0	312	48	0.427	Granodiorite	•
95	105	10.0	437193	0.490	0.060	181	6.6	212	86	0.370	Granodiorite	1/2 Core Split
				0.475							Granodiorite	1/2 Core Split
105	115	10.0	437195	0.735	0.460	177	2.2	38	52	1.048	Granodiorite	1/2 Core Split
115	125	10.0	437196	0.745	0.960	215	3.0	20	50	1.583		1/2 Core Split
125	135	10.0	437197	0.570	0.940	216	2.0	8	52	1.443	Granodiorite	1/2 Core Split
135	145	10.0	437198	0.915	1.480	357	3.2	6	64	2.293	Granodiorite Granodiorite	1/2 Core Split
145	155	10.0	437199	0.395	0.980	188	2.4	8	60	1.360		1/2 Core Split
155	163	8.0	437200	0.765	1.090	342	2.8	6	90	1.796	Granodiorite	1/2 Core Split
163	172	9.0	437201	0.355	0.720	171	2.4	32	152	1.065	Fault	1/2 Core Split
172	180	8.0	437202	0.355	0.440	142	1.4	4	50	0.759	Fault	1/2 Core Split
180	190	10.0	437203	0.335	0.330	168	2.2	222	2470	0.658	Granodiorite	1/2 Core Split
190	200	10.0	437204	0.710	0.750	365	3.2	4	68	1.437	Granodiorite	1/2 Core Split
200	210	10.0	437205	0.710	0.760	209	2.8	6	78	1.356	Granodiorite	1/2 Core Split
210	220	10.0	437206	0.265	0.270	294	1.4	2	92	0.617	Granodiorite	1/2 Core Split
220	230	10.0	437207	0.315	0.260	361	1.0	2	150	0.673	Granodiorite	1/2 Core Split
230	240	10.0	437208	0.555	0.550	377	2.0	4	120	1.134	Granodiorite	1/2 Core Split
240	250	10.0	437209	0.500	0.610	242	1.8	2	118	1.081	Granodiorite	1/2 Core Split
250	260	10.0	437210	0.970	0.970	245	3.4	4	152	1.757	Granodiorite	1/2 Core Split
260	270	10.0	437211	1.850	2.620	316	82.0	1845	1630	4.726	Granodiorite	1/2 Core Split
270	280	10.0	437212	1.190	1.250	480	4.4	22	150	2.319	Granodiorite	1/2 Core Split
280	290	10.0	437213	0.780	0.710	231	2.0	4	96	1.355	Granodiorite	1/2 Core Split
290	300	10.0	437214	0.860	0.760	295	2.4	<2	80	1.496	Granodiorite	1/2 Core Split
300	310	10.0	437215	0.930	0.850	705	2.4	2	72	1.862	Granodiorite	1/2 Core Split
310	320	10.0	437216	1.690	1.240	320	3.6	6	64	2.531	Granodiorite	1/2 Core Split
320	330	10.0	437217	1.440	1.310	248	4.0	<2	68	2.404	Granodiorite	1/2 Core Split
330	340	10.0	437218	0.720	0.770	383	2.6	<2	74	1.469	Granodiorite	1/2 Core Split
340	350	10.0	437219	0.660	0.510	246	1.2	4	92	1.080	Granodiorite	1/2 Core Split
350	360	10.0	437220	0.420	0.670	583	2.0	6	82	1.284	Granodiorite	1/2 Core Split
360	370	10.0	437221	0.590	0.540	174	1.8	4	92	1.030	Granodiorite	1/2 Core Split
370	380	10.0	437222	0.330	0.440	619	1.8	2	78	1.015	Granodiorite	1/2 Core Split
380	390	10.0	437223	0.925	0.370	62	1.2	2	64	1.006	Granodiorite	1/2 Core Split
						"OFOO(0	/ \	05/47.04\.144	- ()+(00.00	2/47.04) . 4//	t)*(0 1608/17 64)"	

CONTINUOUS GOLD-COPPER-MOLY MINERALIZATION

Drill Core Samples Location **UTM NAD 27 Comment Direction / Length Drill Hole Information** Number Logged By A.M. Buddington **Easting** 371,174.20 Porphyry Azimuth 2° 6,642,313.40 delineation & infill Inclination -90° Zone Pebble - Main Laboratory ALSChemex Northing

File No.		34, A91170		ation	372.50		Length 800 Feet		Operator (Cominco American		
	1.4											
From	e Interval (1	lnt.	Sample Number	Au g/t	Cu %	Mo ppm	Ag ppm	Pb ppm	Zn ppm	Cu EQ ¹	Lithology	Sample Method
390	400	10.0	437224	0.860	0.520	191	1.8	6	112	1.192	Granodiorite	1/2 Core Split
400	410	10.0	437225	0.620	0.540	214	1.8	4	106	1.072	Granodiorite	1/2 Core Split
410	420	10.0	437226	0.390	0.800	125	2.6	40	386	1.143	Granodiorite	1/2 Core Split
420	430	10.0	437227	0.450	0.490	310	4.2	86	1240	0.989	Granodiorite	1/2 Core Split
430	440	10.0	437228	0.930	0.450	190	1.4	2	32	1.163	Granodiorite	1/2 Core Split
440	450	10.0	437229	0.540	0.470	293	1.2	20	74	0.990	Granodiorite	1/2 Core Split
450	460	10.0	437230	0.420	0.300	359	1.0	14	70	0.779	Granodiorite	1/2 Core Split
460	470	10.0	437231	0.410	0.420	235	0.8	4	34	0.821	Granodiorite	1/2 Core Split
470	480	10.0	437232	0.315	0.500	393	1.0	6	52	0.931	Granodiorite	1/2 Core Split
480	490	10.0	437233	0.185	0.320	313	0.6	12	42	0.619	Granodiorite	1/2 Core Split
490	500	10.0	437234	0.185	0.410	275	1.0	10	28	0.692	Granodiorite	1/2 Core Split
500	510	10.0	437235	0.265	0.500	453	1.0	<2	22	0.933	Granodiorite	1/2 Core Split
510	520	10.0	437236	0.115	0.030	28	0.6	8	42	0.124	Granodiorite	1/2 Core Split
520	530	10.0	437237	0.315	0.060	225	< 0.2	6	48	0.388	Granodiorite	1/2 Core Split
530	540	10.0	437238	0.330	0.420	635	1.2	2	28	0.999	Granodiorite	1/2 Core Split
540	550	10.0	437239	0.335	0.410	402	1.2	<2	22	0.861	Granodiorite	1/2 Core Split
550	560	10.0	437240	0.470	0.600	283	1.6	2	32	1.074	Granodiorite	1/2 Core Split
560	570	10.0	437241	0.360	0.320	376	1.0	<2	20	0.770	Granodiorite	1/2 Core Split
570	580	10.0	437242	0.315	0.410	350	1.0	2	24	0.817	Granodiorite	1/2 Core Split
580	590	10.0	437243	0.335	0.360	413	1.2	6	32	0.817	Granodiorite	1/2 Core Split
590	600	10.0	437244	0.340	0.550	302	2.0	6	48	0.955	Granodiorite	1/2 Core Split
600	610	10.0	437245	0.390	0.280	859	2.4	52	174	1.034	Granodiorite	1/2 Core Split
610	620	10.0	437246	0.340	0.360	255	1.4	4	24	0.733	Granodiorite	1/2 Core Split
620	630	10.0	437247	0.430	0.370	200	1.4	6	22	0.770	Granodiorite	1/2 Core Split
630	640	10.0	437248	0.450	0.450	289	1.2	6	22	0.911	Granodiorite	1/2 Core Split
640	650	10.0	437249	0.320	0.350	349	0.8	<2	32	0.757	Granodiorite	1/2 Core Split
650	660	10.0	437251	0.190	0.310	799	< 0.2	4	52	0.882	Granodiorite	1/2 Core Split
660	670	10.0	437252	0.310	0.310	197	0.2	6	32	0.621	Granodiorite	1/2 Core Split
670	680	10.0	437253	0.245	0.260	473	0.2	2	22	0.684	Granodiorite	1/2 Core Split
680	690	10.0	437254	0.250	0.400	679	0.8	8	42	0.948	Granodiorite	1/2 Core Split
690	700	10.0	437255	0.505	0.370	200	0.4	4	40	0.809	Granodiorite	1/2 Core Split
700	710	10.0	437256	0.450	0.510	225	1.4	14	46	0.937	Granodiorite	1/2 Core Split
710	720	10.0	437257	0.135	0.250	181	1.0	22	70	0.447	Granodiorite	1/2 Core Split
720	730	10.0	437258	0.170	0.290	240	1.0	6	26	0.542	Granodiorite	1/2 Core Split
730	740	10.0	437259	0.290	0.290	119	1.0	12	36	0.551	Granodiorite	1/2 Core Split
740	750	10.0	437260	0.435	0.440	290	1.8	2	32	0.897	Granodiorite	1/2 Core Split
750	760	10.0	437261	0.230	0.320	326	1.4	16	40	0.663	Granodiorite	1/2 Core Split

CONTINUOUS GOLD-COPPER-MOLY MINERALIZATION

Drill	Drill Core Samples Loca				UTM NAI	Dire	ction / I	Length	Drill Hol	Drill Hole Information		
Logged E	By A.M. E	uddingt	on Eas	sting	371,174.20 Porphyry		Azim	uth	2 °	Number	048	
Laborato	ory ALS	Chemex	Nor	thing	6,642,313.40 delineation &		ion & infill	Inclina	ition	-90°	Zone	Pebble - Main
File No.	A911683	34, A91170	65 Elev	ation				Leng	gth	800 Feet	Operator	Cominco American
Sample	e Interval (feet)	Sample	Au	Cu	Мо	Ag	Pb	Zn	Cu EQ ¹	Lithology	Sample
From	То	Int.	Number	g/t	%	ppm	ppm	ppm	ppm	%	9,	Method
760	770	10.0	437262	0.200	0.240	270	1.0	24	34	0.528	Granodiorite	1/2 Core Split
770	780	10.0	437263	0.410	0.370	101	1.6	2	34	0.703	Granodiorite	1/2 Core Split
780	790	10.0	437264	0.415	0.390	181	2.0	6	32	0.774	Granodiorite	1/2 Core Split
790	800	10.0	437265	0.275	0.250	89	0.8	6	28	0.482	Granodiorite	1/2 Core Split

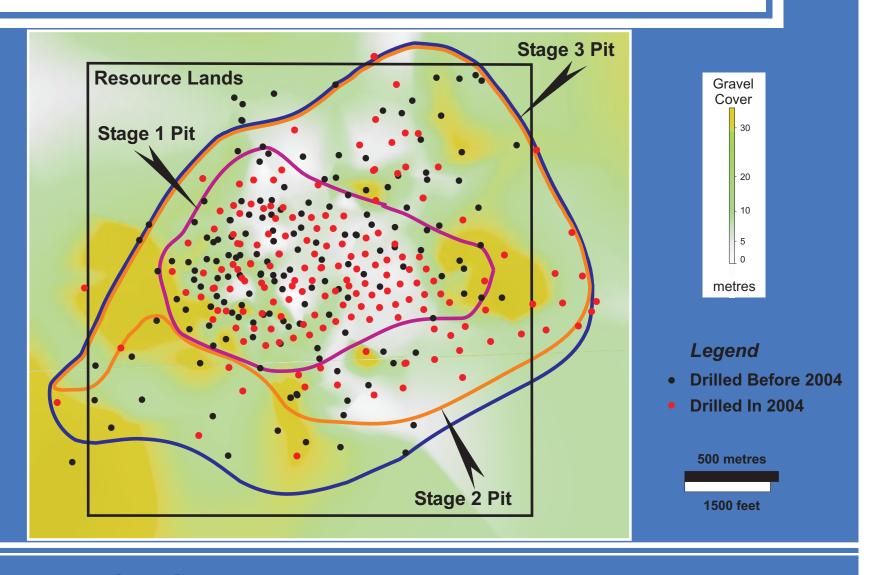
	Entire Drill Hole - Weighted Average Analytical Results												
Sample	ed Interval ((feet)	Interval	Au	Cu	Mo	Ag	Pb	Zn	Cu EQ			
From	То	Int.	Metres	g/t	%	ppm	ppm	ppm	ppm	%			
35.0	800.0	765.0	233.17	0.524	0.516	294	3	43	130	1.043			

NDM 2004 PROGRAM

OBJECTIVE:

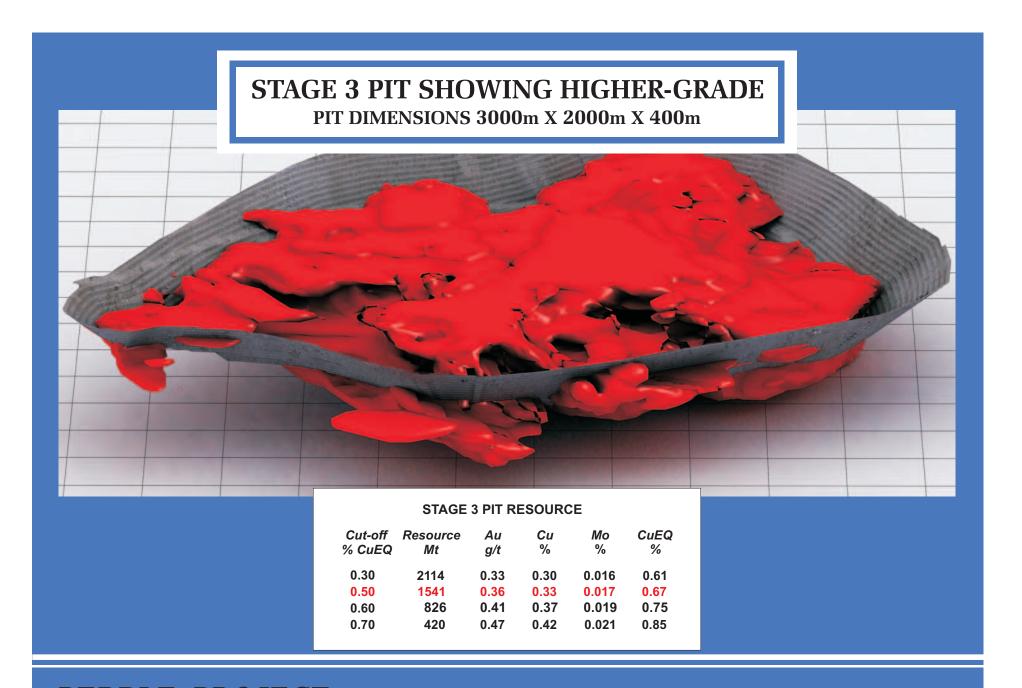
Advance the Pebble project to enable the completion in 2005 of a Bankable Feasibility Study and the submission of permit applications to construct a major mine.

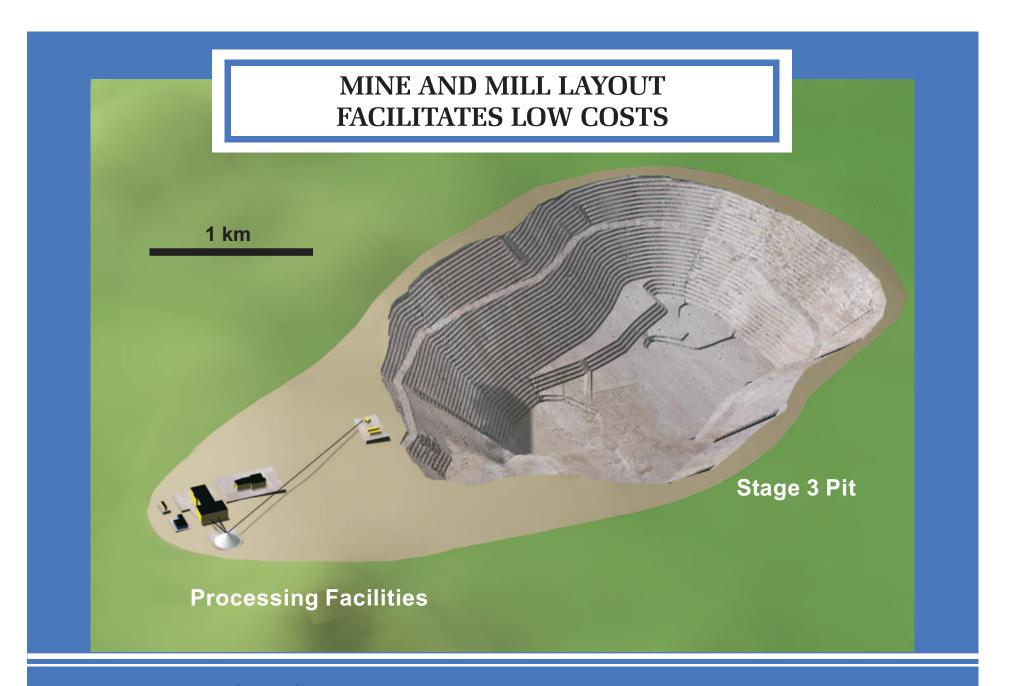
PROGRAM:


Infill drilling to upgrade resources to measured and indicated categories to finalize open pit mine planning

Extensional drilling to further define the extent of the deposit and its higher-grade areas

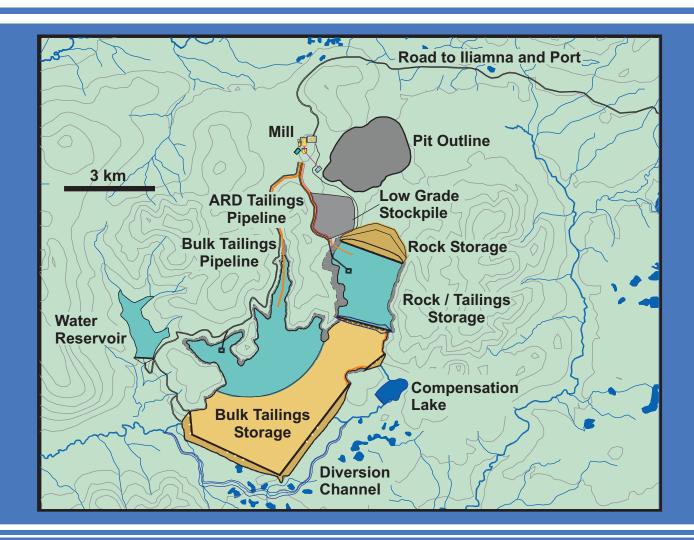
Data collection to facilitate the design and engineering of processing, tailings, infrastructure and all other project facilities


Environmental and socio-economic baseline data collection and studies to prepare permit applications


DEVELOPING MEASURED AND INDICATED RESOURCES

PEBBLE PROJECT

2004 Drilling Plan



PEBBLE PROJECT

Site Layout Planning

EFFICIENT SITING OF PROJECT COMPONENTS

PRELIMINARY ASSESSMENT MINE MODELS*

PEBBLE MINE MODELS¹

Milling Rate (tonnes/day)	100,000	200,000	100 - 200,000
Milling Rate (million tonnes/year)	35	70	35 to 70 in yr 6
Mine Life of Stage 3 Pit (years)	62	31	33
Waste:Ore Ratio	0.23:1	0.23:1	0.23:1

¹See Preliminary Assessment, November 2004, www.sedar.com.

^{*}These financial analyses are preliminary in nature and are based entirely on inferred mineral resources that are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as mineral reserves, and there is no certainty that the financial projections contained herein will be realized.

GOOD METALLURGICAL RESULTS

EXAMPLE METAL RECOVERIES¹

Mine Name	Copper (%)	Gold (%)	Molybdenum (%)
Alumbrera	92	78	-
La Caridad	83	-	43
Batu Hijau	90	79	-
Collahausi	88	-	-
Chuquicamata	88	-	61
Los Pelambres	91	-	63
Cuajone	83	-	60
Bagdad	89	-	70
Highland Valley	90	-	50
Kemess	82	72	-
PT Freeport	85	85	-
Average	87	78	58
Pebble Mine Models	88	76	60

¹See Preliminary Assessment, November 2004, www.sedar.com.

MINE MODELS UNDER ASSESSMENT

PROJECTED ANNUAL PRODUCTION 1,2,3 (Years 1 through 10)

Milling Rate (tonnes/day)	100,000	200,000	100 - 200,000
Copper (million lbs) Gold (ozs)	256 365,000	470 674,000	357 514,000
Molybdenum (million lbs)	8	15	12
Silver (million oz)	1.4	2.5	1.9
Copper Cash Cost (\$/lb) (Net of Gold, Silver, Molybdenum credits)	0.24	0.19	0.22

¹ See Preliminary Assessment, November 2004, www.sedar.com.

PERCENT OF ANNUAL REVENUE

Metal	%
Copper	47
Gold	41
Molybdenum	10
Silver	2

²Cash costs include on-site and off-site operating costs, concentrate transportation, smelter charges and credits.

³At estimated long-term metal prices of \$0.95/lb Cu, \$395/oz Au, \$5.00/oz Ag and \$5.00/lb Mo

LARGE SCALE METAL PRODUCTION

NORTH AMERICAN GOLD MINES RANKED BY 2003 PRODUCTION¹

Rank	Mine Name	Gold Produced Thousand Ounces
1	Newmont Nevada	2,491
2	Betze-Post	1,559
3	Cortez	1,065
4	Round Mountain	729
5	Pebble (200,000 tpd)	674
6	Meikle	552
7	Hemlo	536
8	Red Lake	532
9	Porcupine	457
10	Fort Knox	392
11	Pebble (100,000 tpd)	365
12	Eskay Creek	352
13	Bingham Canyon	305
14	Jerritt Canyon	302
15	Golden Giant	295
16	Kemess	294

¹Data for 2003 published in World Gold, June 2004.

PEBBLE MODELS USE REALISTIC COST ASSUMPTIONS

COST ASSUMPTIONS¹

Mine Model	Capital Cost (US\$ billion)	Sustaining Capital (US\$ million)	Operating Cost (US\$/tonne)
100,000 tpd	1.00	276	5.06
200,000 tpd	1.50	197	4.36
100 - 200,000 tpd	1.00 + .50	225	5.06 - 4.36

¹ See Preliminary Assessment, November 2004, www.sedar.com.

PEBBLE MODELS USE REALISTIC COST ASSUMPTIONS

OPERATING COST COMPONENTS¹

Mine Model	Mining Rate kt/day	Waste:Ore Ratio	Mining Cost \$/t mined	Milling Cost \$/t milled	Other Costs \$/t milled
Peer Group Averages	340	2.20	0.64	2.20	1.02
100,000 tpd	123	0.23	0.87	3.00	1.00
200,000 tpd	246	0.23	0.87	2.51	0.79

¹See Preliminary Assessment, November 2004, www.sedar.com.

DIVERSIFIED CO-PRODUCT REVENUES

CONCENTRATE TRANSPORTATION AND SMELTER TERMS¹

Item	Units	Amount
Concentrate Grade	% Cu	28.00
Transportation	\$/wmt conc.	61.28
Smelter Treatment	\$/dmt conc.	57.50
Copper Refining Charge	\$/lb Cu	0.058
Copper Unit Deduction	Units or (%)	1
Copper Payable	%	96.75
Gold Refining Charge	\$/oz	3.00
Gold Deduction	g/t conc.	1.0
Gold Payable	%	98.00
Silver Refining Charge	\$/oz	0.30
Silver Payable	%	90.00
Molybdenum Payable	%	98.00
Molybdenum Freight/Processing	\$/Ib	0.75
Insurance/Representation	\$/dmt conc.	0.45

¹See Preliminary Assessment, November 2004, www.sedar.com.

ATTRACTIVE RETURNS AT VARYING METAL PRICES 100,000 TPD FACILITY

FINANCIAL ANALYSES AT VARYING METAL PRICES 1,2,3

	Metal Prices				NPV @ 0%	NPV @ 5%	
Copper \$/lb	Gold \$/oz	Silver \$/oz	Molybdenum \$/lb	(%)	(billion \$)	(billion \$)	
0.85	350	5.00	5.00	10.1	2.242	0.462	
0.95	395	5.00	5.00	15.3	4.073	1.047	
1.00	350	5.00	6.00	15.9	4.367	1.123	
1.00	400	5.00	6.00	18.0	5.148	1.376	
1.25	415	7.00	15.00	33.0	12.215	3.511	

¹ Analyses are prepared on a pre-tax, 100% equity basis.

² Assumes that State constructs the road and port as part of its Southwest Alaska Regional Transportation Plan. If road and port costs are included in the project's capital costs, IRR is 13.5% at estimated long-term metal prices of \$0.95/lb Cu, \$395/oz Au, \$5.00/oz Ag, and \$5.00/lb Mo and 30.0% at recent metal prices of \$1.25/lb Cu, \$415/oz Au, \$7.00/oz Ag and \$15/lb Mo.

³ See Preliminary Assessment, November 2004, www.sedar.com.

ATTRACTIVE RETURNS AT VARYING METAL PRICES 200,000 TPD FACILITY

FINANCIAL ANALYSES AT VARYING METAL PRICES 1,2,3

	Metal Prices				NPV @ 0%	NPV @ 5%	
Copper \$/Ib	Gold \$/oz	Silver \$/oz	Molybdenum \$/lb	(%)	(billion \$)	(billion \$)	
0.85	350	5.00	5.00	14.4	3.297	1.189	
0.95	395	5.00	5.00	20.3	5.128	2.091	
1.00	350	5.00	6.00	21.0	5.422	2.219	
1.00	400	5.00	6.00	23.3	6.203	2.607	
1.25	415	7.00	15.00	40.8	13.271	5.972	

¹ Analyses are prepared on a pre-tax, 100% equity basis.

² Assumes that State constructs the road and port as part of its Southwest Alaska Regional Transportation Plan. If road and port costs are included in the project's capital costs, IRR is 18.8% at estimated long-term metal prices of \$0.95/lb Cu, \$395/oz Au, \$5.00/oz Ag, and \$5.00/lb Mo and 38.5% at recent metal prices of \$1.25/lb Cu, \$415/oz Au, \$7.00/oz Ag and \$15/lb Mo.

³ See Preliminary Assessment, November 2004, www.sedar.com.

ATTRACTIVE RETURNS AT VARYING METAL PRICES 100,000 TPD - 200,000 TPD FACILITY

FINANCIAL ANALYSES AT VARYING METAL PRICES 1,2,3

	Metal Prices			IRR	NPV @ 0%	NPV @ 5%	
Copper \$/lb	Gold \$/oz	Silver \$/oz	Molybdenum \$/lb	(%)	(billion \$)	(billion \$)	
0.85	350	5.00	5.00	12.5	3.144	0.948	
0.95	395	5.00	5.00	17.7	4.974	1.757	
1.00	350	5.00	6.00	18.3	5.269	1.872	
1.00	400	5.00	6.00	20.3	6.049	2.219	
1.25	415	7.00	15.00	35.3	13.116	5.234	

¹ Analyses are prepared on a pre-tax, 100% equity basis.

² Assumes that State constructs the road and port as part of its Southwest Alaska Regional Transportation Plan. If road and port costs are included in the project's capital costs, IRR is 16.9% at estimated long-term metal prices of \$0.95/lb Cu, \$395/oz Au, \$5.00/oz Ag, and \$5.00/lb Mo and 32.6% at recent metal prices of \$1.25/lb Cu, \$415/oz Au, \$7.00/oz Ag and \$15/lb Mo.

³ See Preliminary Assessment, November 2004, www.sedar.com.

ATTRACTIVE RETURNS AT VARYING METAL PRICES

METAL	VARYING METAL PRICES US\$ PER POUND OR OUNCE				
WIETAL	Low		Long-Term Copper Bull	High	Recent
Copper	0.85	0.95	1.00	1.00	1.25
Gold	350	395	350	400	415
Molybdenum	5.00	5.00	6.00	6.00	15.00
Silver	5.00	5.00	5.00	5.00	7.00

MINE MODELS (TPD)	RATES OF RETURN (%) ^{1,2,3}				
100,000	10.1	15.3	15.9	18.0	33.0
100-200,000	12.5	17.7	18.3	20.3	35.3
200,000	14.4	20.3	21.0	23.3	40.8

Analyses are prepared on a pre-tax, 100% equity basis.

Assumes that State constructs the road and port as part of its Southwest Alaska Regional Transportation Plan.

³ See Preliminary Assessment, November 2004, www.sedar.com.

COMPARISON OF PEER GROUP MINING COSTS

MINING COST¹

Mine Name	Mining Rate kt/day	Waste:Ore Ratio	Mining Cost \$/t mined
Alumbrera	387	2.5	0.68
La Caridad	230	1.6	0.40
Batu Hijau	598	3.0	0.50
Collahausi	373	4.2	0.70
Chuquicamata	489	2.9	0.91
Los Pelambres	291	1.4	0.71
Cuajone	273	2.6	0.39
Bagdad	150	1.3	0.79
Highland Valley	208	0.5	0.58
Kemess	120	1.9	0.75
PT Freeport	665	2.1	0.64
Average	340	2.2	0.64

¹Recorded in 2002.

Pebble (100,000 TPD)	123	0.2	0.87
Pebble (200,000 TPD)	246	0.2	0.87

OTHER COST¹

Other Site Costs \$/t mined
1.35
0.82
1.98
0.88
0.90
0.80
0.48
0.68
0.40
0.70
2.24
1.02

1.00
0.79

COMPARISONS OF PEER GROUP MILLING COSTS

MILLING COST 1

ENERGY COST¹

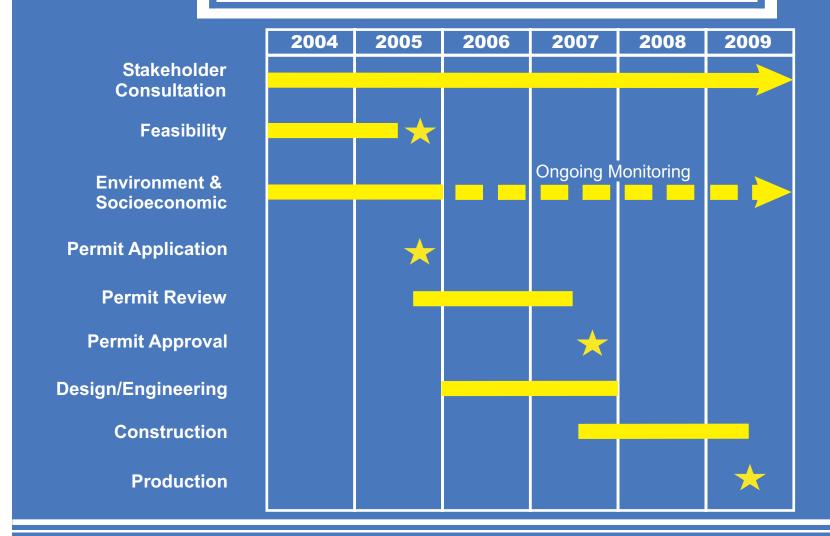
Mine Name	Milling Rate t/d	Milling \$/t milled	Energy \$/t milled	Total Milling \$/t milled
Alumbrera	90	1.72	0.54	2.26
La Caridad	90	1.09	0.91	2.00
Batu Hijau	140	1.21	0.57	1.78
Collahausi	110	1.92	0.81	2.73
Chuquicamata	178	1.89	0.61	2.50
Los Pelambres	110	1.40	0.47	1.87
Cuajone	88	1.16	1.19	2.35
Bagdad	79	1.75	0.30	2.05
Highland Valley	138	1.54	0.37	1.91
Kemess	50	1.19	0.60	1.79
PT Freeport	223	2.12	0.83	2.95
Average	120	1.55	0.65	2.20

NERGY COS
Energy ¢/kwh
2.8
4.5
3.1
4.0
4.0
2.5
6.5
4.3
1.8
2.2
5.5
3.9

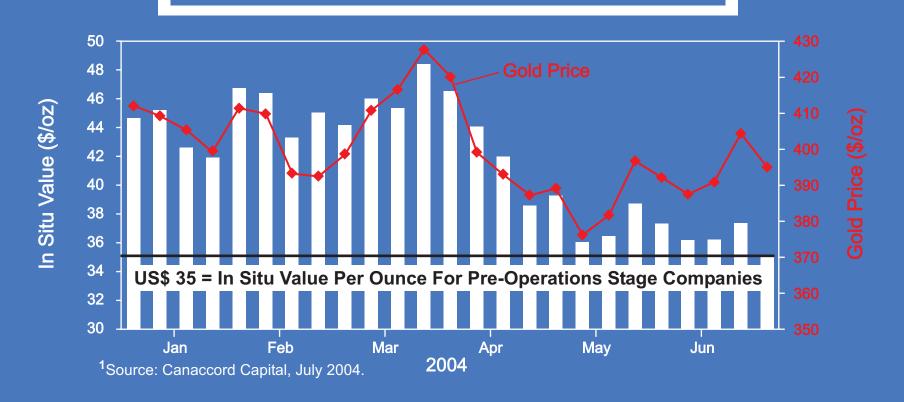
¹Recorded in 2002.

Pebble	100	2.00	1.00	3.00
Pebble	200	1.52	1.00	2.52

5.4 5.4


"WHAT IF" PEBBLE OPERATES AT PEER GROUP MILLING COST OF \$2.20 PER TONNE

Mine Models	IRR ^{1,2} (%)	Payback (years)	NPV @5% (\$ billion)
100,000 tpd	15.3 → 18.7	4.3	1.05 → 1.53
100 - 200,000 tpd	17.7→20.0	4.3	1.76→2.10
200,000 tpd	20.3→22.0	3.4	2.09 -> 2.40


¹ See Preliminary Assessment, November 2004, www.sedar.com.

²Calculated @ long-term metal prices: Cu \$0.95/lb, Au \$395/oz, Mo \$5.00/lb, Ag \$5.00/oz.

PEBBLE PROJECT TIMELINE

IN SITU GOLD VALUATION SHOWS STRONG GROWTH POTENTIAL¹

NDM VALUATION USING CANACCORD MODEL Gold Only Gold Equivalent

26.5 Million Ounces x US\$ 35/oz = US\$ 928 Million

76 Million Ounces x US\$ 35/oz = US\$ 2.260 Billion

NDM SHARES ARE UNDERVALUED

October 31, 2004

Shares Issued	46.2 million
---------------	--------------

Dilutables Outstailing	ibles Outstanding 7.3 mi	llion
------------------------	--------------------------	-------

Current Fully Diluted Shares	53.5 million
------------------------------	--------------

Galahad Owns 35%

Current Cash US \$13 million

Cash From Dilutables US \$28 million

SUMMARY

NDM's 2003 drilling program:

- Dramatically expanded the Pebble deposit to 26.5 million ounces of gold and 16.5 billion pounds of copper
- Increased the higher-grade resources to 435 million tonnes of 0.84% copper-equivalent
- Established the Pebble deposit as the largest deposit of contained gold resources and the second largest deposit of contained copper resources in North America

Northern Dynasty's 2004 program is advancing the project to feasibility and permitting as rapidly as possible and includes:

- Infill drilling to upgrade resources to measured and indicated categories
- Extensional drilling to further define the extent of the deposit and its higher-grade areas
- Engineering data collection and studies for mine, processing, marketing, site facilities and infrastructure design
- Environmental studies and socioeconomic studies to prepare permit applications
- Power, port and road studies partnering with Alaska government

Pebble project's development will be positively impacted by:

- Host state is pro-mining
- Power sources are available
- Transportation and infrastructure development is straight forward
- Property deal provides control of entire district
- Deposit amenable to very low cost mining
- Long life deposit large scale production profile
- Good metallurgical results
- Higher-grade resources available for quick payback

Financial Models developed by a recent Preliminary Assessment indicate very attractive rates of return.

The Pebble deposit makes up only a small segment of one of the world's largest sulphide systems. Exploration drilling by Northern Dynasty has demonstrated strong potential for multiple large-scale deposits.

The development of a very large-scale, long-life gold-copper-molybdenum mining district is in the making.

NORTHERN DYNASTY INFORMATION

NORTHERN DYNASTY MINERALS LTD **CORPORATE OFFICERS**

Robert Dickinson Chairman

Ronald Thiessen President and CEO

Jeffrey Mason Chief Financial Officer

DIRECTORS

David Copeland

Scott Cousens

Robert Dickinson

David Elliott

Gordon Fretwell

Wayne Kirk

Jeffrey Mason

Brian Mountford

Walter Segsworth

Ronald Thiessen

Ian Watson

NORTHERN DYNASTY MINES INC. **OPERATING OFFICERS**

Robert Dickinson Chairman

Ronald Thiessen CEO

Brian Mountford President

Bruce Jenkins

Chief Operating Officer

ATTORNEYS

Lang Michener

Barristers and Solicitors

1500 - 1055 West Georgia Street

Vancouver, British Columbia

Canada V6E 4N7

AUDITORS

De Visser Gray **Chartered Accountants** 401 - 905 West Pender Street Vancouver, British Columbia Canada V6C 1L6

TRANSFER AGENT

Computershare Investor Services Inc. 3rd Floor, 510 Burrard Street Vancouver, British Columbia Canada V6C 3B9

LISTED

TSX Venture Exchange: NDM OTCBB: NDMLF

CAPITALIZATION

(as of October 31, 2004) Issued and Outstanding 45,145,937 Fully Diluted 53,497,423

ALASKA OFFICE

Northern Dynasty Mines Inc. Suite 604, 3201 C Street Anchorage, AK 99503 Telephone (907) 339-2600 Facscimile (907) 339-2601

CORPORATE ADDRESS AND INVESTOR SERVICES

Northern Dynasty Minerals Ltd. 1020 – 800 West Pender Street Vancouver, British Columbia

Canada V6C 2V6

Telephone (604) 684-6365

Facsimile (604) 684-8092

Toll-free 1-800-667-2114

e-mail info@hdgold.com

web site www.northerndynasty.com