Trace Elements: 2007 Agency Update

SLR International Corp. November 27, 2007

Objectives

- Establish baseline concentrations of naturally occurring constituents (NOCs) in shallow soils, native plants (including aquatic plants), sediment, and fish tissue
- Evaluate variability in baseline levels of NOCs across different geochemistries, habitats, and plant species
 - Evaluate both spatial and temporal variability of trace elements in plants and soil

Target Analyses

Parameter	Method	Soil	Sediment	Plants	Fish
Ammonia	E350.3	Х	X	X	
Chloride	E300.0	X	X	Xc	
Cyanide	E335.2	Х	x	X	
Fluoride	SW4500FC	X	X	Xc	
Sulfate	E300.0	Х	Х	Xc	
Mercury	SW7471A	Х	X	Х	Х
Metals	SW6010/6020	Xa	Xa	Xa	Xp
DRO/RRO	AK102/103	Xc			
Pesticides/PCBs	EPA 8081/8082				Xc
Organic Carbon	ASTM D4129-82M	Х			

^a 26 Metals; ^b 11 Metals; ^c Disc

^c Discontinued after 2005.

Where Has the Program Been So Far?

- Plant/soil/fish/sediment sampling began in 2004
- Plant/soil sampling program updated in 2005:
 - Sampling locations and density modified to be proportional to habitat abundance
 - All plant and soil sampling collocated
 - Two sampling events per season
 - Early season browse
 - Late season browse and berries
 - Aquatic plants and ponds added to program
 - Seep sediments sampled

Sampling Locations 2004

Sampling Locations 2005

Where Has the Program Been So Far?

- Pebble East area added in 2006
- Subsurface soil sampling eliminated in 2006
- Aquatic plant/pond sampling expanded in 2006 to include:
 - Groundwater-fed ponds

- Precipitation-fed ponds

- Beaver dam impacted ponds

Sampling Locations 2006

Sampling Locations 2007

TE Sampling Locations -Transportation Corridor: Bristol Bay Drainage

Transportation Corridor Sampling Locations

Transportation Corridor Sampling Locations: Cook Inlet

Sampling Summary - Mine Site Study Area

- Sampling based on preliminary identification of seven upland habitats
- Over 50 different plant species, including:
 - trees, shrubs, forbs, moss, lichen, grasses, and sedges

 Each vegetation sampling location is visited twice per season to collect both early season browse and late season browse and berries

Current Program Status - Mine Site Study Area

- Total of 111 soil locations sampled
- Total of 38 plant locations sampled
- 17 ponds sampled; aquatic vegetation collected where available

What Plants Have Been Sampled?

- Trees (3 species)
 - 13 samples

- Shrubs (16 species)
 - 188 vegetative samples
 - 78 berry samples (5 species)
- Forbs (19 species)
 - 103 samples

SLR

- Grasses and sedges (5 species)
- 59 samples
- Mosses (5 species)
 - 60 samples
 - Lichens (3 species) - 46 samples

Why So Many Different Plants?

- Adequate characterization of multiple habitats and species groups required
- Many different medicinal and traditional uses by natives
- Multiple food sources for wildlife

• Improves confidence in selecting indicator species

Traditional and Medicinal Plant Uses

SLR

Species	Food/Drink	Medicinal	Other	Sampled at Pebble
Trees				
Black Spruce			Х	X
White Spruce			Х	
Shrubs				
Shrub/dwart Birch			Х	X
Paper Birch			Х	
Willow s			Х	X
Mountain Alder		X	Х	X
Bog Blueberry	Х			X
Crow berry	Х			X
Salmonberry	Х			X
Lingonberry	X			x
Forbs				
Putchkie Cow Parsnip	Х	X		
Firew eed	Х	X		x
Horsetail	Х	X		x
Cloudberry	Х			x
Angelica		X		
Stink Weed	Х			
Sw eet Gale		X	Х	
Devil's Club		X		
Labrador lea	Х	X		
Skunk Currant	Х		Х	
Alaska Spirea			Х	X
Elderberry		X	Х	x
Mosses				
Terrestrial Green Moss			Х	x
Lichens				
Caribou Lichen	Х	X		Х
Ferns				
Wood Fern	Х	X		
Lady Fern	X	X		
Grasses and Sedges				
Blue Joint Grass	x	X	X	x
Beach Rve	x	X	X	~
Seages		~	X	x
<u>_</u>				
	1			

Sediment Program

- River and Creek sampling begun in 2004
 - North Fork Koktuli River, South Fork Koktuli River, Upper Talarik Creek, Kaskanak Creek
 - 24 Locations, 56 samples in 2004
 - 18 Locations, 33 samples in 2005
 - 13 Locations, 13 samples in 2006
 - 14 Locations, 14 samples in 2007
- Minor drainages sampled in 2004 only
 - 17 locations, 21 samples
- Pond and seep sampling begun in 2005
 - 6 Ponds, 14 samples in 2005
 - 16 Ponds, samples in 2006
 - 19 Ponds, 20 samples in 2007
 - 9 Seeps, 12 samples in 2005

Sediment Sampling Locations

Sampling Summary: Trace Elements 2004-2007

Medium	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>
Sediment	77	59	25	34
Surface Soil	78	85	45	27
Subsurface Soil	9	7	0	0
Plant Tissues	66	180	169	203
Berries	11	25	17	25
Aquatic Plants	0	15	solutions for t	oday's environment

Results: Soil Elements

- Total of 251 samples
- Results for elements generally consistent in surface and shallow samples
- Several metals (Bi, Se, Ag, Sn, CN, and ammonia) present in surface samples at 2-3x concentration in subsurface samples
- Subsurface sampling discontinued based on these results

Results: Key Soil Findings

- Biogenic sources of petroleum-range hydrocarbons present in shallow soil
 - RRO = 1,286 mg/kg average concentration in surface (n=20)
 - DRO = 137 mg/kg
- DRO/RRO soil concentrations much greater in moraine samples than in other landforms (5-20x higher)
 - RRO average of 2,000 mg/kg in moraines, 100 mg/kg in outwash plains
 - Appropriate to identify a background concentration for DRO and RRO
 - Landform-specific background may be appropriate

Results: Key Soil Findings (cont)

- Element soil concentrations highest in talus slope samples for more than half (16 of 26) of the metals
 - Particularly for As, Cu, Pb, and Ag
- Concentrations highest in moraine samples for 9 metals
 - Particularly for Ba
- CN highest in talus slope samples (0.25 mg/kg)

Results: Key Sediment Findings

- 195 Total samples
- Several metals (AI, Be, Cd, Cr, K, TI, V) had consistent concentrations across all sediment types
 - Five metals had higher concentrations (Ba, Co, Fe, Mg, Mn, Ni) in river sediments than in pond or seep sediments
 - Two metals had lower concentrations (Ca, Hg) in river sediments than in pond or seep sediments

Results: Key Sediment Findings (cont)

- Pond sediments had higher concentrations of only three metals (B, Se, Sn), and lowest concentrations for six metals (AI, Bi, Fe, Mn, Ag, V)
- Seep sediments were enriched relative to other sediments for five metals (Sb, As, Ca, Cr, Ag)
- Several metals had higher concentrations in the South Fork Koktuli River than other river sediments(Bi, Cd, Cu, Pb, Mo, Zn)
 - 56 mg/kg Cu vs. <20 mg/kg in all other river sediments
- For CN, ponds and seeps had the lowest average concentrations, while samples from minor drainages had the highest concentrations

Results: Key Plant Findings

- 618 Vegetation samples
- 78 Berry samples
- 91 Aquatic plant samples
- Most abundant plants sampled:
 - short-stalk sedge (39)
 - reindeer lichen (34)
 - bog blueberry (33)
 - diamond-leaf willow (33)
 - dwarf (shrub) birch (27)
 - sphagnum moss (19)
 - Crowberry (19)

Results: Key Plant Findings (cont.)

- Elemental concentrations generally lower in berries than vegetative samples
- Higher concentrations of elements in talus slope soils not evident in plants
- Most metal concentrations lower in August than July samples
- CN higher in August samples (all plants in 2005, variable in 2006)
 - Cyanogenic bacteria may be contributing to seasonal differences in plant concentrations (preliminary results from 2007)
 - Supported by results from sediment sampling

Plant Concentrations by Season: Cyanide 2005

Plant Concentrations by Season: Cyanide 2006

HCN Production in Soil: Results

Soil = ND; Plants = 0.16 - 1.1 mg/kg

Soil = 0.21 mg/kg; Plants = 0.24 – 5.7 mg/kg

Soil = 0.08 mg/kg; Plants = 0.5 – 3.5 mg/kg

Soil = 0.14 mg/kg; Plants = 0.06 – 2.1 mg/kg

Conclusions

- Over 1,200 samples from soil, sediment, plants, and berries across the mine site study area
 - Mine site area adequately characterized for baseline conditions
 - 2007 data still to be evaluated
- 122 soil and plant samples from the Transportation Corridor collected in 2004
- 124 soil and plant samples from Cook Inlet portion of Transportation Corridor collected in 2006 and 2007
 - 2007 data still to be evaluated
 - Data completeness depends on final plans for Corridor

