Snow Surveys

Snow Survey, Pebble Mine Region

Outline

- Background
- Objectives
- Study Area
- 2007 Field Surveys
- Snow Distribution Models
- Comparison to NRCS Snow Courses
- Snowpack Ablation

Snow Survey, Pebble Mine Region

Background

- Typically, 30–35% of precipitation at mine site falls as snow between October and April.
- Snow surveys complement concurrent surface water hydrology studies by characterizing snow water equivalent (SWE) and snowmelt rates of late season snow.

Snow Survey, Pebble Mine Region

Objectives

- Create regional maps of annual spring snow distribution across the mine area.
- Determine the rate of snowmelt and potential runoff during breakup.
- Provide correlative measurements for met station, stream gauge, and local snow survey data sets.

Field Survey Findings

- Snow depth in mid-April ranged to over 120 inches in both 2004 and 2005; up to 139 inches in 2006; and up to 215 inches in 2007.
- Snow-water equivalents exceeded 60 inches on the lee sides of upper slopes in 2004, 2005; 75 inches in 2006, 2007
- Equipment limitation resulted in underestimation of 2004 SWE (and 2005–2006, to a lesser extent)

Field Survey Findings

- Surface features (sastrugi, cornices, etc.) suggest extensive redistribution from large wind events from multiple directions.
- Vegetation canopy (tall shrub zone)
 traps large amounts of snow in riparian
 zones, even with low snow
 accumulation on the nearby landscape

2007 Field Survey Findings

- Extensive area with thin to absent snowpack
- Snow rarely over-topped shrubs
- Ice fairly common beneath snowpack and at toe slopes
- Low elevations melted rapidly and early, higher elevation snowpack persisted

Snow Distribution Mapping, 2007

- Incorporate field data from lower elevations
- Characterize wind variability and wind redistribution patterns
- Quantify large snow drifts

Wind Distribution Effects

- Wind data for winters ending 2005–2007 and historical data (Cominco, winters ending 1992–1993) were used to determine predominant winter wind patterns.
- Standardized to 3 m above ground level
- Snow redistribution at wind speeds 5–10 m/sec and higher

Wind Distribution Effects

- Wind patterns fairly consistent across years
- Southeast wind vector predominant, N/NE wind vector secondary
- Wind patterns vary with local topography
- Digital elevation model (DEM) of the study used to generate snow distribution predictors based on wind directions
- This step generates two sets of directiondependent grids (digital representations): "Shelter" and "Drift" (Winstral, et al. 2002)

Wind Distribution Effects

Shelter Grid

Wind Direction

Drift Grid

Wind Direction

Shelter value of each grid cell is the upwind look angle to the highest feature within the search distance. Value for the point shown is approx. -30 degrees

A drift zone requires both an abrupt change in slope and a source of snow (unsheltered terrain) upwind.

Drift Profiles

- Quantify large snow drifts
- Depth probe (up to 20') and survey
 GPS used to record transects across large snow drifts

Drift Profiles

- Combined with snow density estimates, drift profiles constrain upper limits for snow accumulation
- Low snow
 accumulation in2007, but deepestsnow measurementsto date (up to 215 inches)

Snow Drift East of Frying Pan Lake

Snow Distribution Model Results, 2004–2007

- Elevation
- Slope
- Aspect category
- Equivalent Latitude
- Shelter (SE, NW)
- Drift (SE, NW)

• Field survey data

Comparison of Pebble Snow Courses to Regional NRCS Snow Courses

Fishtrap Lake

Pebble 1

Pebble 2

Snow Course Summary

- Port Alsworth is not well correlated with nearby Pebble snow courses
- Based on three years of data, Fishtrap Lake appears to be the best NRCS snow course for comparisons
- Snow accumulation was above average at Fishtrap in 2005 (113% of average), but not near record levels (142% in 1993, 144% in 2001)
- 2007 snow accumulation was the lowest on record for Fishtrap Lake (47% of average)

Spring Snowpack Ablation

- Ablation is a combination of melting, evaporation and sublimation of the snowpack.
- Ablation rates were measured in the field by biweekly repeat visits to fixed survey stations (2004–2007).
- MODIS imagery combined with on-site meteorological data and SWE distribution map is being evaluated as a method of estimating ablation rates during spring breakup.

Ablation Field Survey Data, 2004–2007 (Pebble Snow Course 2)

Ablation Curves, 2004–2006

Snow Survey-Summary

• A terrain modeling approach eventually will allow accurate spatial estimates of SWE from meteorological data and limited field surveys.

• Basin and sub-basin snow inputs can be easily determined from the resulting SWE grid of the mine area for any area of local interest.

• The use of the terrain modeling approach allows us to evaluate the effect of mine development scenarios on spring snow distribution and local water balance.