Pebble Project Fish Resource Baseline Studies Update 2007

Presented By: Paul McLarnon - HDR Alaska, Inc.

Date: November 29, 2007

Baseline Study Objectives

Document the distribution and abundance of fish resources within the project area

Acquire pre-development baseline data for post development monitoring

Guide Project Design

Provide information for environmental permitting.

Rainbow Trout Telemetry Study & Spring Spawning Surveys

Overwinter Sampling

Salmon Escapement Estimates

UT Fish Abundance

Juvenile Anadromous Fish Distribution

Fish Tissue Sampling

Habitat Surveys UT Reach 3 Tributaries

Mine Site Study Area

Upper Talarik Rainbow Trout Radio Telemetry Study Objectives

- Document life history patterns
 - Migrations patterns related to
 - spawning, feeding, over wintering
 - Geographic extent
- Examine relationships between fish that utilize the UT and how may also use other streams in the region.

Rainbow Trout Radio Telemetry Tagging Methods

- 38 tags surgically implanted
- Aqui-S isoeugenol anesthetic
- Summerfelt and Smith (1990) technique
- Mobile sterile surgery station

A Little More About Tagging

- Tags Lotek SRM11-35 coded tags with mortality indication
- Tag life ~ 2 years
- Tagging occurred from 8/24 9/18 resulting in 9 discrete tag events
- 21 fish sub sampled to establish length / weight relationship

And Even More Yet

- Tag weight = 10 g in air and 5.6 g in water
- Minimum tag length (FL)= 440 mm (861g)
- Average tag length = 543 mm (1,800g)
- Maximum = 648 mm (3,100 g)
- Tag in air = 1.2 % of the smallest fish body weight
- Floy tags were deployed with each radio tagged fish

HDR

Rainbow Trout Radio Telemetry Tacking Methods

Monitor movement with mobile and stationary tracking methods

- Fixed stations
 - 3/4 mile U/S from the mouth of the UT
 - At the mouth of the Lower Talarik adjacent to lagoon

Rainbow Trout Radio Telemetry Results

Distribution of transmitters as of last survey in October of 2007

Rainbow Trout Radio Telemetry Tracking Results

- 34 of 38 tagged fish have contributed data
- Average aerial survey produces 24 unique locations
- 5 mortalities based on tag sensor
- 4 survived >30 days and traveled to other rivers

Tracking Status	Number of Transmitters	Percent of Sample (<i>n</i> =38)
Consistently Tracked	26	68.4%
Intermittently Tracked	8	21.1%
Limited or No Data	4	10.5%

Upper Talarik Creek Rainbow Trout Surveys

Five aerial surveys were flown during May 2007

Salmon Escapement

Study Objectives: Obtain estimates of run timing and escapement of salmon by species to UT, SFK and NFK by means of aerial survey counts

Aerial surveys were conducted every 5 days from July 6 – October 9, 2007

- •SFK 18 Aerial Surveys
- •NFK 18 Aerial Surveys
- •UT 18 Aerial Surveys

Escapement Estimates

Two methods are used to estimate escapement

(1) A trapezoidal model where the number of fish present in the study area by day is estimated using linear interpolation for the days not surveyed; and

(2) A statistical model where maximum likelihood methodology (MLE) is used to estimate a fish abundance curve by fitting actual observations to modeled abundances. Specifics of the statistical model can be found in Hilborn et al (1999).

Trapezoidal and Statistical model to aerial observations for estimation of area-under-the-curve

Observations for Chinook salmon from the South Fork of the Koktuli River were used for this illustration.

Chinook Escapement

Trapezoidal Results

Stream Life = 15d, Observer Efficiency = 0.8 SFK / NFK & 0.6 UT

Sockeye Escapement

Trapezoidal Results
Stream Life = 10d, Observer Efficiency = 0.8 SFK / NFK & 0.7 UT

Coho Escapement Est.

Trapezoidal Results
Stream Life = 12d, Observer Efficiency = 0.6 SFK, NFK & UT

Chum Escapement Est.

Trapezoidal Results –
Stream Life = 12 d, Observer Efficiency = 0.6 NFK & SFK

Overwinter Sampling

 Objective - Document spatial distribution and relative abundance of juvenile fish and identify overwintering habitats

Overwinter Sample Site Locations

• 2004-2006 catch rates were low

 2007 catch rates increased as a result of putting greater effort in to sampling off channel habitats (OCH)

Overwinter Sample Results Total Relative Abundance 04-07

Species Distribution Between Main and Off Channel Habitats

Species Distribution Between Main and Off Channel Habitats

Upper Talarik Winter Sampling 2004-2007

Species Distribution Between Main and Off Channel Habitats

SFK Winter Sampling 2004-2007

UT – Coho Size Class Distribution BetweenMain and Off Channel Habitats

SFK – Chinook Size Class Distribution Between Main and Off Channel Habitats

SFK OCH Study Area 22 transects – 1000 ft long

SFK Off Channel Habitat Sample Results

89 Snorkel Sites - All Drainages

Upper Talarik Creek Snorkel / Depletion Estimates

• **Study Goal:** Develop fish abundance estimates and habitat associations for juvenile salmonids in the lower two-thirds of Upper Talarik Creek under summer conditions.

 Uses a more quantitative and more focused method (removal sampling) to calibrate a more variable but wider-ranging method (snorkel surveys)

Upper Talarik Creek Snorkel / Depletion Estimates

Blocking Nets Set Prior to Snorkel Survey

Two Snorkel Surveyors Per Site, All Fish Counted

Multi-Pass Removal Depletion Sampling (Zippin 1956) Conducted After Snorkel Surveys

Three to five passes with the electrofisher in a given area.

Depletion Regression Across All Sites

Key Assumptions:

- 1. Depletion occurs with each successive pass
 - 2. No fish enter or leave the sample site

Habitat Type	No. Sampled
Run	6
Riffle	5
Island Complex	3
Pool	1

Comparison Between Upper Talarik Depletion Estimates and Snorkel Counts

UT 2005 & 2006 Main Channel Snorkel Survey Results

NFK 2005 & 2006 Main Channel Snorkel **Surveys Results** 7000 6000 Relative Abundance 5000 4000 3000 2000 1000 ■ KS □ CS ■ WF ■ AG DV ■ SS

SFK 2005 & 2006 Main Channel Snorkel Survey Results

Intermittent Reach and Above FPL Sample Sites 2004-2007

Species Composition and Relative Abundance Above Frying Pan Lake sample size = 1,091

The End

